1.0.0[−]Primitive Type f32
The 32-bit floating point type.
Methods
impl f32
[src]
pub fn floor(self) -> f32
[src]
Returns the largest integer less than or equal to a number.
Examples
let f = 3.7_f32; let g = 3.0_f32; let h = -3.7_f32; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0); assert_eq!(h.floor(), -4.0);Run
pub fn ceil(self) -> f32
[src]
Returns the smallest integer greater than or equal to a number.
Examples
let f = 3.01_f32; let g = 4.0_f32; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);Run
pub fn round(self) -> f32
[src]
Returns the nearest integer to a number. Round half-way cases away from
0.0
.
Examples
let f = 3.3_f32; let g = -3.3_f32; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);Run
pub fn trunc(self) -> f32
[src]
Returns the integer part of a number.
Examples
let f = 3.7_f32; let g = 3.0_f32; let h = -3.7_f32; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), 3.0); assert_eq!(h.trunc(), -3.0);Run
pub fn fract(self) -> f32
[src]
Returns the fractional part of a number.
Examples
use std::f32; let x = 3.5_f32; let y = -3.5_f32; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x <= f32::EPSILON); assert!(abs_difference_y <= f32::EPSILON);Run
pub fn abs(self) -> f32
[src]
Computes the absolute value of self
. Returns NAN
if the
number is NAN
.
Examples
use std::f32; let x = 3.5_f32; let y = -3.5_f32; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x <= f32::EPSILON); assert!(abs_difference_y <= f32::EPSILON); assert!(f32::NAN.abs().is_nan());Run
pub fn signum(self) -> f32
[src]
Returns a number that represents the sign of self
.
1.0
if the number is positive,+0.0
orINFINITY
-1.0
if the number is negative,-0.0
orNEG_INFINITY
NAN
if the number isNAN
Examples
use std::f32; let f = 3.5_f32; assert_eq!(f.signum(), 1.0); assert_eq!(f32::NEG_INFINITY.signum(), -1.0); assert!(f32::NAN.signum().is_nan());Run
#[must_use]
pub fn copysign(self, sign: f32) -> f32
1.35.0[src]
Returns a number composed of the magnitude of self
and the sign of
sign
.
Equal to self
if the sign of self
and sign
are the same, otherwise
equal to -self
. If self
is a NAN
, then a NAN
with the sign of
sign
is returned.
Examples
use std::f32; let f = 3.5_f32; assert_eq!(f.copysign(0.42), 3.5_f32); assert_eq!(f.copysign(-0.42), -3.5_f32); assert_eq!((-f).copysign(0.42), 3.5_f32); assert_eq!((-f).copysign(-0.42), -3.5_f32); assert!(f32::NAN.copysign(1.0).is_nan());Run
pub fn mul_add(self, a: f32, b: f32) -> f32
[src]
Fused multiply-add. Computes (self * a) + b
with only one rounding
error, yielding a more accurate result than an unfused multiply-add.
Using mul_add
can be more performant than an unfused multiply-add if
the target architecture has a dedicated fma
CPU instruction.
Examples
use std::f32; let m = 10.0_f32; let x = 4.0_f32; let b = 60.0_f32; // 100.0 let abs_difference = (m.mul_add(x, b) - ((m * x) + b)).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn div_euclid(self, rhs: f32) -> f32
1.38.0[src]
Calculates Euclidean division, the matching method for rem_euclid
.
This computes the integer n
such that
self = n * rhs + self.rem_euclid(rhs)
.
In other words, the result is self / rhs
rounded to the integer n
such that self >= n * rhs
.
Examples
let a: f32 = 7.0; let b = 4.0; assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0Run
pub fn rem_euclid(self, rhs: f32) -> f32
1.38.0[src]
Calculates the least nonnegative remainder of self (mod rhs)
.
In particular, the return value r
satisfies 0.0 <= r < rhs.abs()
in
most cases. However, due to a floating point round-off error it can
result in r == rhs.abs()
, violating the mathematical definition, if
self
is much smaller than rhs.abs()
in magnitude and self < 0.0
.
This result is not an element of the function's codomain, but it is the
closest floating point number in the real numbers and thus fulfills the
property self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)
approximatively.
Examples
let a: f32 = 7.0; let b = 4.0; assert_eq!(a.rem_euclid(b), 3.0); assert_eq!((-a).rem_euclid(b), 1.0); assert_eq!(a.rem_euclid(-b), 3.0); assert_eq!((-a).rem_euclid(-b), 1.0); // limitation due to round-off error assert!((-std::f32::EPSILON).rem_euclid(3.0) != 0.0);Run
pub fn powi(self, n: i32) -> f32
[src]
Raises a number to an integer power.
Using this function is generally faster than using powf
Examples
use std::f32; let x = 2.0_f32; let abs_difference = (x.powi(2) - (x * x)).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn powf(self, n: f32) -> f32
[src]
Raises a number to a floating point power.
Examples
use std::f32; let x = 2.0_f32; let abs_difference = (x.powf(2.0) - (x * x)).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn sqrt(self) -> f32
[src]
Takes the square root of a number.
Returns NaN if self
is a negative number.
Examples
use std::f32; let positive = 4.0_f32; let negative = -4.0_f32; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference <= f32::EPSILON); assert!(negative.sqrt().is_nan());Run
pub fn exp(self) -> f32
[src]
Returns e^(self)
, (the exponential function).
Examples
use std::f32; let one = 1.0f32; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn exp2(self) -> f32
[src]
Returns 2^(self)
.
Examples
use std::f32; let f = 2.0f32; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn ln(self) -> f32
[src]
Returns the natural logarithm of the number.
Examples
use std::f32; let one = 1.0f32; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn log(self, base: f32) -> f32
[src]
Returns the logarithm of the number with respect to an arbitrary base.
The result may not be correctly rounded owing to implementation details;
self.log2()
can produce more accurate results for base 2, and
self.log10()
can produce more accurate results for base 10.
Examples
use std::f32; let five = 5.0f32; // log5(5) - 1 == 0 let abs_difference = (five.log(5.0) - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn log2(self) -> f32
[src]
Returns the base 2 logarithm of the number.
Examples
use std::f32; let two = 2.0f32; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn log10(self) -> f32
[src]
Returns the base 10 logarithm of the number.
Examples
use std::f32; let ten = 10.0f32; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn abs_sub(self, other: f32) -> f32
[src]
you probably meant (self - other).abs()
: this operation is (self - other).max(0.0)
except that abs_sub
also propagates NaNs (also known as fdimf
in C). If you truly need the positive difference, consider using that expression or the C function fdimf
, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).
The positive difference of two numbers.
- If
self <= other
:0:0
- Else:
self - other
Examples
use std::f32; let x = 3.0f32; let y = -3.0f32; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x <= f32::EPSILON); assert!(abs_difference_y <= f32::EPSILON);Run
pub fn cbrt(self) -> f32
[src]
Takes the cubic root of a number.
Examples
use std::f32; let x = 8.0f32; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn hypot(self, other: f32) -> f32
[src]
Calculates the length of the hypotenuse of a right-angle triangle given
legs of length x
and y
.
Examples
use std::f32; let x = 2.0f32; let y = 3.0f32; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn sin(self) -> f32
[src]
Computes the sine of a number (in radians).
Examples
use std::f32; let x = f32::consts::FRAC_PI_2; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn cos(self) -> f32
[src]
Computes the cosine of a number (in radians).
Examples
use std::f32; let x = 2.0 * f32::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn tan(self) -> f32
[src]
Computes the tangent of a number (in radians).
Examples
use std::f32; let x = f32::consts::FRAC_PI_4; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn asin(self) -> f32
[src]
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].
Examples
use std::f32; let f = f32::consts::FRAC_PI_2; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f32::consts::FRAC_PI_2).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn acos(self) -> f32
[src]
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].
Examples
use std::f32; let f = f32::consts::FRAC_PI_4; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f32::consts::FRAC_PI_4).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn atan(self) -> f32
[src]
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];
Examples
use std::f32; let f = 1.0f32; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn atan2(self, other: f32) -> f32
[src]
Computes the four quadrant arctangent of self
(y
) and other
(x
) in radians.
x = 0
,y = 0
:0
x >= 0
:arctan(y/x)
->[-pi/2, pi/2]
y >= 0
:arctan(y/x) + pi
->(pi/2, pi]
y < 0
:arctan(y/x) - pi
->(-pi, -pi/2)
Examples
use std::f32; // Positive angles measured counter-clockwise // from positive x axis // -pi/4 radians (45 deg clockwise) let x1 = 3.0f32; let y1 = -3.0f32; // 3pi/4 radians (135 deg counter-clockwise) let x2 = -3.0f32; let y2 = 3.0f32; let abs_difference_1 = (y1.atan2(x1) - (-f32::consts::FRAC_PI_4)).abs(); let abs_difference_2 = (y2.atan2(x2) - (3.0 * f32::consts::FRAC_PI_4)).abs(); assert!(abs_difference_1 <= f32::EPSILON); assert!(abs_difference_2 <= f32::EPSILON);Run
pub fn sin_cos(self) -> (f32, f32)
[src]
Simultaneously computes the sine and cosine of the number, x
. Returns
(sin(x), cos(x))
.
Examples
use std::f32; let x = f32::consts::FRAC_PI_4; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 <= f32::EPSILON); assert!(abs_difference_1 <= f32::EPSILON);Run
pub fn exp_m1(self) -> f32
[src]
Returns e^(self) - 1
in a way that is accurate even if the
number is close to zero.
Examples
use std::f32; let x = 6.0f32; // e^(ln(6)) - 1 let abs_difference = (x.ln().exp_m1() - 5.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn ln_1p(self) -> f32
[src]
Returns ln(1+n)
(natural logarithm) more accurately than if
the operations were performed separately.
Examples
use std::f32; let x = f32::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn sinh(self) -> f32
[src]
Hyperbolic sine function.
Examples
use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = ((e * e) - 1.0) / (2.0 * e); let abs_difference = (f - g).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn cosh(self) -> f32
[src]
Hyperbolic cosine function.
Examples
use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = ((e * e) + 1.0) / (2.0 * e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference <= f32::EPSILON);Run
pub fn tanh(self) -> f32
[src]
Hyperbolic tangent function.
Examples
use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn asinh(self) -> f32
[src]
Inverse hyperbolic sine function.
Examples
use std::f32; let x = 1.0f32; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn acosh(self) -> f32
[src]
Inverse hyperbolic cosine function.
Examples
use std::f32; let x = 1.0f32; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn atanh(self) -> f32
[src]
Inverse hyperbolic tangent function.
Examples
use std::f32; let e = f32::consts::E; let f = e.tanh().atanh(); let abs_difference = (f - e).abs(); assert!(abs_difference <= 1e-5);Run
pub fn clamp(self, min: f32, max: f32) -> f32
[src]
Restrict a value to a certain interval unless it is NaN.
Returns max
if self
is greater than max
, and min
if self
is
less than min
. Otherwise this returns self
.
Not that this function returns NaN if the initial value was NaN as well.
Panics
Panics if min > max
, min
is NaN, or max
is NaN.
Examples
#![feature(clamp)] assert!((-3.0f32).clamp(-2.0, 1.0) == -2.0); assert!((0.0f32).clamp(-2.0, 1.0) == 0.0); assert!((2.0f32).clamp(-2.0, 1.0) == 1.0); assert!((std::f32::NAN).clamp(-2.0, 1.0).is_nan());Run
impl f32
[src]
pub fn is_nan(self) -> bool
[src]
Returns true
if this value is NaN
.
use std::f32; let nan = f32::NAN; let f = 7.0_f32; assert!(nan.is_nan()); assert!(!f.is_nan());Run
pub fn is_infinite(self) -> bool
[src]
Returns true
if this value is positive infinity or negative infinity, and
false
otherwise.
use std::f32; let f = 7.0f32; let inf = f32::INFINITY; let neg_inf = f32::NEG_INFINITY; let nan = f32::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());Run
pub fn is_finite(self) -> bool
[src]
Returns true
if this number is neither infinite nor NaN
.
use std::f32; let f = 7.0f32; let inf = f32::INFINITY; let neg_inf = f32::NEG_INFINITY; let nan = f32::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());Run
pub fn is_normal(self) -> bool
[src]
Returns true
if the number is neither zero, infinite,
subnormal, or NaN
.
use std::f32; let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 let max = f32::MAX; let lower_than_min = 1.0e-40_f32; let zero = 0.0_f32; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f32::NAN.is_normal()); assert!(!f32::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());Run
pub fn classify(self) -> FpCategory
[src]
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.
use std::num::FpCategory; use std::f32; let num = 12.4_f32; let inf = f32::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);Run
pub fn is_sign_positive(self) -> bool
[src]
Returns true
if self
has a positive sign, including +0.0
, NaN
s with
positive sign bit and positive infinity.
let f = 7.0_f32; let g = -7.0_f32; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive());Run
pub fn is_sign_negative(self) -> bool
[src]
Returns true
if self
has a negative sign, including -0.0
, NaN
s with
negative sign bit and negative infinity.
let f = 7.0f32; let g = -7.0f32; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative());Run
pub fn recip(self) -> f32
[src]
Takes the reciprocal (inverse) of a number, 1/x
.
use std::f32; let x = 2.0_f32; let abs_difference = (x.recip() - (1.0 / x)).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn to_degrees(self) -> f32
1.7.0[src]
Converts radians to degrees.
use std::f32::{self, consts}; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn to_radians(self) -> f32
1.7.0[src]
Converts degrees to radians.
use std::f32::{self, consts}; let angle = 180.0f32; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference <= f32::EPSILON);Run
pub fn max(self, other: f32) -> f32
[src]
Returns the maximum of the two numbers.
let x = 1.0f32; let y = 2.0f32; assert_eq!(x.max(y), y);Run
If one of the arguments is NaN, then the other argument is returned.
pub fn min(self, other: f32) -> f32
[src]
Returns the minimum of the two numbers.
let x = 1.0f32; let y = 2.0f32; assert_eq!(x.min(y), x);Run
If one of the arguments is NaN, then the other argument is returned.
pub fn to_bits(self) -> u32
1.20.0[src]
Raw transmutation to u32
.
This is currently identical to transmute::<f32, u32>(self)
on all platforms.
See from_bits
for some discussion of the portability of this operation
(there are almost no issues).
Note that this function is distinct from as
casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
assert_ne!((1f32).to_bits(), 1f32 as u32); // to_bits() is not casting! assert_eq!((12.5f32).to_bits(), 0x41480000); Run
pub fn from_bits(v: u32) -> f32
1.20.0[src]
Raw transmutation from u32
.
This is currently identical to transmute::<u32, f32>(v)
on all platforms.
It turns out this is incredibly portable, for two reasons:
- Floats and Ints have the same endianness on all supported platforms.
- IEEE-754 very precisely specifies the bit layout of floats.
However there is one caveat: prior to the 2008 version of IEEE-754, how to interpret the NaN signaling bit wasn't actually specified. Most platforms (notably x86 and ARM) picked the interpretation that was ultimately standardized in 2008, but some didn't (notably MIPS). As a result, all signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
Rather than trying to preserve signaling-ness cross-platform, this implementation favors preserving the exact bits. This means that any payloads encoded in NaNs will be preserved even if the result of this method is sent over the network from an x86 machine to a MIPS one.
If the results of this method are only manipulated by the same architecture that produced them, then there is no portability concern.
If the input isn't NaN, then there is no portability concern.
If you don't care about signalingness (very likely), then there is no portability concern.
Note that this function is distinct from as
casting, which attempts to
preserve the numeric value, and not the bitwise value.
Examples
let v = f32::from_bits(0x41480000); assert_eq!(v, 12.5);Run
pub fn to_be_bytes(self) -> [u8; 4]
[src]
Return the memory representation of this floating point number as a byte array in big-endian (network) byte order.
Examples
#![feature(float_to_from_bytes)] let bytes = 12.5f32.to_be_bytes(); assert_eq!(bytes, [0x41, 0x48, 0x00, 0x00]);Run
pub fn to_le_bytes(self) -> [u8; 4]
[src]
Return the memory representation of this floating point number as a byte array in little-endian byte order.
Examples
#![feature(float_to_from_bytes)] let bytes = 12.5f32.to_le_bytes(); assert_eq!(bytes, [0x00, 0x00, 0x48, 0x41]);Run
pub fn to_ne_bytes(self) -> [u8; 4]
[src]
Return the memory representation of this floating point number as a byte array in native byte order.
As the target platform's native endianness is used, portable code
should use to_be_bytes
or to_le_bytes
, as appropriate, instead.
Examples
#![feature(float_to_from_bytes)] let bytes = 12.5f32.to_ne_bytes(); assert_eq!( bytes, if cfg!(target_endian = "big") { [0x41, 0x48, 0x00, 0x00] } else { [0x00, 0x00, 0x48, 0x41] } );Run
pub fn from_be_bytes(bytes: [u8; 4]) -> f32
[src]
Create a floating point value from its representation as a byte array in big endian.
Examples
#![feature(float_to_from_bytes)] let value = f32::from_be_bytes([0x41, 0x48, 0x00, 0x00]); assert_eq!(value, 12.5);Run
pub fn from_le_bytes(bytes: [u8; 4]) -> f32
[src]
Create a floating point value from its representation as a byte array in little endian.
Examples
#![feature(float_to_from_bytes)] let value = f32::from_le_bytes([0x00, 0x00, 0x48, 0x41]); assert_eq!(value, 12.5);Run
pub fn from_ne_bytes(bytes: [u8; 4]) -> f32
[src]
Create a floating point value from its representation as a byte array in native endian.
As the target platform's native endianness is used, portable code
likely wants to use from_be_bytes
or from_le_bytes
, as
appropriate instead.
Examples
#![feature(float_to_from_bytes)] let value = f32::from_ne_bytes(if cfg!(target_endian = "big") { [0x41, 0x48, 0x00, 0x00] } else { [0x00, 0x00, 0x48, 0x41] }); assert_eq!(value, 12.5);Run
Trait Implementations
impl Product<f32> for f32
1.12.0[src]
impl<'a> Product<&'a f32> for f32
1.12.0[src]
impl Debug for f32
[src]
impl DivAssign<f32> for f32
1.8.0[src]
fn div_assign(&mut self, other: f32)
[src]
impl<'_> DivAssign<&'_ f32> for f32
1.22.0[src]
fn div_assign(&mut self, other: &f32)
[src]
impl<'_> AddAssign<&'_ f32> for f32
1.22.0[src]
fn add_assign(&mut self, other: &f32)
[src]
impl AddAssign<f32> for f32
1.8.0[src]
fn add_assign(&mut self, other: f32)
[src]
impl Neg for f32
[src]
impl<'_> Neg for &'_ f32
[src]
type Output = <f32 as Neg>::Output
The resulting type after applying the -
operator.
fn neg(self) -> <f32 as Neg>::Output
[src]
impl<'_> Rem<&'_ f32> for f32
[src]
type Output = <f32 as Rem<f32>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: &f32) -> <f32 as Rem<f32>>::Output
[src]
impl<'a> Rem<f32> for &'a f32
[src]
type Output = <f32 as Rem<f32>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: f32) -> <f32 as Rem<f32>>::Output
[src]
impl<'_, '_> Rem<&'_ f32> for &'_ f32
[src]
type Output = <f32 as Rem<f32>>::Output
The resulting type after applying the %
operator.
fn rem(self, other: &f32) -> <f32 as Rem<f32>>::Output
[src]
impl Rem<f32> for f32
[src]
The remainder from the division of two floats.
The remainder has the same sign as the dividend and is computed as:
x - (x / y).trunc() * y
.
Examples
let x: f32 = 50.50; let y: f32 = 8.125; let remainder = x - (x / y).trunc() * y; // The answer to both operations is 1.75 assert_eq!(x % y, remainder);Run
type Output = f32
The resulting type after applying the %
operator.
fn rem(self, other: f32) -> f32
[src]
impl Div<f32> for f32
[src]
type Output = f32
The resulting type after applying the /
operator.
fn div(self, other: f32) -> f32
[src]
impl<'a> Div<f32> for &'a f32
[src]
type Output = <f32 as Div<f32>>::Output
The resulting type after applying the /
operator.
fn div(self, other: f32) -> <f32 as Div<f32>>::Output
[src]
impl<'_, '_> Div<&'_ f32> for &'_ f32
[src]
type Output = <f32 as Div<f32>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &f32) -> <f32 as Div<f32>>::Output
[src]
impl<'_> Div<&'_ f32> for f32
[src]
type Output = <f32 as Div<f32>>::Output
The resulting type after applying the /
operator.
fn div(self, other: &f32) -> <f32 as Div<f32>>::Output
[src]
impl FromStr for f32
[src]
type Err = ParseFloatError
The associated error which can be returned from parsing.
fn from_str(src: &str) -> Result<f32, ParseFloatError>
[src]
Converts a string in base 10 to a float. Accepts an optional decimal exponent.
This function accepts strings such as
- '3.14'
- '-3.14'
- '2.5E10', or equivalently, '2.5e10'
- '2.5E-10'
- '5.'
- '.5', or, equivalently, '0.5'
- 'inf', '-inf', 'NaN'
Leading and trailing whitespace represent an error.
Grammar
All strings that adhere to the following EBNF grammar
will result in an Ok
being returned:
Float ::= Sign? ( 'inf' | 'NaN' | Number )
Number ::= ( Digit+ |
Digit+ '.' Digit* |
Digit* '.' Digit+ ) Exp?
Exp ::= [eE] Sign? Digit+
Sign ::= [+-]
Digit ::= [0-9]
Known bugs
In some situations, some strings that should create a valid float instead return an error. See issue #31407 for details.
Arguments
- src - A string
Return value
Err(ParseFloatError)
if the string did not represent a valid
number. Otherwise, Ok(n)
where n
is the floating-point
number represented by src
.
impl UpperExp for f32
[src]
impl Mul<f32> for f32
[src]
type Output = f32
The resulting type after applying the *
operator.
fn mul(self, other: f32) -> f32
[src]
impl<'_> Mul<&'_ f32> for f32
[src]
type Output = <f32 as Mul<f32>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &f32) -> <f32 as Mul<f32>>::Output
[src]
impl<'a> Mul<f32> for &'a f32
[src]
type Output = <f32 as Mul<f32>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: f32) -> <f32 as Mul<f32>>::Output
[src]
impl<'_, '_> Mul<&'_ f32> for &'_ f32
[src]
type Output = <f32 as Mul<f32>>::Output
The resulting type after applying the *
operator.
fn mul(self, other: &f32) -> <f32 as Mul<f32>>::Output
[src]
impl<'a> Sum<&'a f32> for f32
1.12.0[src]
impl Sum<f32> for f32
1.12.0[src]
impl From<i8> for f32
1.6.0[src]
Converts i8
to f32
losslessly.
impl From<u8> for f32
1.6.0[src]
Converts u8
to f32
losslessly.
impl From<i16> for f32
1.6.0[src]
Converts i16
to f32
losslessly.
impl From<u16> for f32
1.6.0[src]
Converts u16
to f32
losslessly.
impl MulAssign<f32> for f32
1.8.0[src]
fn mul_assign(&mut self, other: f32)
[src]
impl<'_> MulAssign<&'_ f32> for f32
1.22.0[src]
fn mul_assign(&mut self, other: &f32)
[src]
impl Clone for f32
[src]
impl<'_> Sub<&'_ f32> for f32
[src]
type Output = <f32 as Sub<f32>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &f32) -> <f32 as Sub<f32>>::Output
[src]
impl Sub<f32> for f32
[src]
type Output = f32
The resulting type after applying the -
operator.
fn sub(self, other: f32) -> f32
[src]
impl<'_, '_> Sub<&'_ f32> for &'_ f32
[src]
type Output = <f32 as Sub<f32>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: &f32) -> <f32 as Sub<f32>>::Output
[src]
impl<'a> Sub<f32> for &'a f32
[src]
type Output = <f32 as Sub<f32>>::Output
The resulting type after applying the -
operator.
fn sub(self, other: f32) -> <f32 as Sub<f32>>::Output
[src]
impl PartialEq<f32> for f32
[src]
impl PartialOrd<f32> for f32
[src]
fn partial_cmp(&self, other: &f32) -> Option<Ordering>
[src]
fn lt(&self, other: &f32) -> bool
[src]
fn le(&self, other: &f32) -> bool
[src]
fn ge(&self, other: &f32) -> bool
[src]
fn gt(&self, other: &f32) -> bool
[src]
impl Default for f32
[src]
impl<'a> Add<f32> for &'a f32
[src]
type Output = <f32 as Add<f32>>::Output
The resulting type after applying the +
operator.
fn add(self, other: f32) -> <f32 as Add<f32>>::Output
[src]
impl Add<f32> for f32
[src]
type Output = f32
The resulting type after applying the +
operator.
fn add(self, other: f32) -> f32
[src]
impl<'_> Add<&'_ f32> for f32
[src]
type Output = <f32 as Add<f32>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &f32) -> <f32 as Add<f32>>::Output
[src]
impl<'_, '_> Add<&'_ f32> for &'_ f32
[src]
type Output = <f32 as Add<f32>>::Output
The resulting type after applying the +
operator.
fn add(self, other: &f32) -> <f32 as Add<f32>>::Output
[src]
impl<'_> RemAssign<&'_ f32> for f32
1.22.0[src]
fn rem_assign(&mut self, other: &f32)
[src]
impl RemAssign<f32> for f32
1.8.0[src]
fn rem_assign(&mut self, other: f32)
[src]
impl Display for f32
[src]
impl LowerExp for f32
[src]
impl<'_> SubAssign<&'_ f32> for f32
1.22.0[src]
fn sub_assign(&mut self, other: &f32)
[src]
impl SubAssign<f32> for f32
1.8.0[src]
fn sub_assign(&mut self, other: f32)
[src]
impl Copy for f32
[src]
Auto Trait Implementations
impl UnwindSafe for f32
impl RefUnwindSafe for f32
impl Unpin for f32
impl Send for f32
impl Sync for f32
Blanket Implementations
impl<T> From<T> for T
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
ⓘImportant traits for &'_ mut Ffn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,