1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
use crate::ops::{Mul, Add};
use crate::num::Wrapping;
use crate::iter;

/// Trait to represent types that can be created by summing up an iterator.
///
/// This trait is used to implement the [`sum`] method on iterators. Types which
/// implement the trait can be generated by the [`sum`] method. Like
/// [`FromIterator`] this trait should rarely be called directly and instead
/// interacted with through [`Iterator::sum`].
///
/// [`sum`]: ../../std/iter/trait.Sum.html#tymethod.sum
/// [`FromIterator`]: ../../std/iter/trait.FromIterator.html
/// [`Iterator::sum`]: ../../std/iter/trait.Iterator.html#method.sum
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
pub trait Sum<A = Self>: Sized {
    /// Method which takes an iterator and generates `Self` from the elements by
    /// "summing up" the items.
    #[stable(feature = "iter_arith_traits", since = "1.12.0")]
    fn sum<I: Iterator<Item=A>>(iter: I) -> Self;
}

/// Trait to represent types that can be created by multiplying elements of an
/// iterator.
///
/// This trait is used to implement the [`product`] method on iterators. Types
/// which implement the trait can be generated by the [`product`] method. Like
/// [`FromIterator`] this trait should rarely be called directly and instead
/// interacted with through [`Iterator::product`].
///
/// [`product`]: ../../std/iter/trait.Product.html#tymethod.product
/// [`FromIterator`]: ../../std/iter/trait.FromIterator.html
/// [`Iterator::product`]: ../../std/iter/trait.Iterator.html#method.product
#[stable(feature = "iter_arith_traits", since = "1.12.0")]
pub trait Product<A = Self>: Sized {
    /// Method which takes an iterator and generates `Self` from the elements by
    /// multiplying the items.
    #[stable(feature = "iter_arith_traits", since = "1.12.0")]
    fn product<I: Iterator<Item=A>>(iter: I) -> Self;
}

// N.B., explicitly use Add and Mul here to inherit overflow checks
macro_rules! integer_sum_product {
    (@impls $zero:expr, $one:expr, #[$attr:meta], $($a:ty)*) => ($(
        #[$attr]
        impl Sum for $a {
            fn sum<I: Iterator<Item=$a>>(iter: I) -> $a {
                iter.fold($zero, Add::add)
            }
        }

        #[$attr]
        impl Product for $a {
            fn product<I: Iterator<Item=$a>>(iter: I) -> $a {
                iter.fold($one, Mul::mul)
            }
        }

        #[$attr]
        impl<'a> Sum<&'a $a> for $a {
            fn sum<I: Iterator<Item=&'a $a>>(iter: I) -> $a {
                iter.fold($zero, Add::add)
            }
        }

        #[$attr]
        impl<'a> Product<&'a $a> for $a {
            fn product<I: Iterator<Item=&'a $a>>(iter: I) -> $a {
                iter.fold($one, Mul::mul)
            }
        }
    )*);
    ($($a:ty)*) => (
        integer_sum_product!(@impls 0, 1,
                #[stable(feature = "iter_arith_traits", since = "1.12.0")],
                $($a)*);
        integer_sum_product!(@impls Wrapping(0), Wrapping(1),
                #[stable(feature = "wrapping_iter_arith", since = "1.14.0")],
                $(Wrapping<$a>)*);
    );
}

macro_rules! float_sum_product {
    ($($a:ident)*) => ($(
        #[stable(feature = "iter_arith_traits", since = "1.12.0")]
        impl Sum for $a {
            fn sum<I: Iterator<Item=$a>>(iter: I) -> $a {
                iter.fold(0.0, Add::add)
            }
        }

        #[stable(feature = "iter_arith_traits", since = "1.12.0")]
        impl Product for $a {
            fn product<I: Iterator<Item=$a>>(iter: I) -> $a {
                iter.fold(1.0, Mul::mul)
            }
        }

        #[stable(feature = "iter_arith_traits", since = "1.12.0")]
        impl<'a> Sum<&'a $a> for $a {
            fn sum<I: Iterator<Item=&'a $a>>(iter: I) -> $a {
                iter.fold(0.0, Add::add)
            }
        }

        #[stable(feature = "iter_arith_traits", since = "1.12.0")]
        impl<'a> Product<&'a $a> for $a {
            fn product<I: Iterator<Item=&'a $a>>(iter: I) -> $a {
                iter.fold(1.0, Mul::mul)
            }
        }
    )*)
}

integer_sum_product! { i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize }
float_sum_product! { f32 f64 }

#[stable(feature = "iter_arith_traits_result", since="1.16.0")]
impl<T, U, E> Sum<Result<U, E>> for Result<T, E>
    where T: Sum<U>,
{
    /// Takes each element in the `Iterator`: if it is an `Err`, no further
    /// elements are taken, and the `Err` is returned. Should no `Err` occur,
    /// the sum of all elements is returned.
    ///
    /// # Examples
    ///
    /// This sums up every integer in a vector, rejecting the sum if a negative
    /// element is encountered:
    ///
    /// ```
    /// let v = vec![1, 2];
    /// let res: Result<i32, &'static str> = v.iter().map(|&x: &i32|
    ///     if x < 0 { Err("Negative element found") }
    ///     else { Ok(x) }
    /// ).sum();
    /// assert_eq!(res, Ok(3));
    /// ```
    fn sum<I>(iter: I) -> Result<T, E>
        where I: Iterator<Item = Result<U, E>>,
    {
        iter::process_results(iter, |i| i.sum())
    }
}

#[stable(feature = "iter_arith_traits_result", since="1.16.0")]
impl<T, U, E> Product<Result<U, E>> for Result<T, E>
    where T: Product<U>,
{
    /// Takes each element in the `Iterator`: if it is an `Err`, no further
    /// elements are taken, and the `Err` is returned. Should no `Err` occur,
    /// the product of all elements is returned.
    fn product<I>(iter: I) -> Result<T, E>
        where I: Iterator<Item = Result<U, E>>,
    {
        iter::process_results(iter, |i| i.product())
    }
}

#[stable(feature = "iter_arith_traits_option", since = "1.37.0")]
impl<T, U> Sum<Option<U>> for Option<T>
where
    T: Sum<U>,
{
    /// Takes each element in the `Iterator`: if it is a `None`, no further
    /// elements are taken, and the `None` is returned. Should no `None` occur,
    /// the sum of all elements is returned.
    ///
    /// # Examples
    ///
    /// This sums up the position of the character 'a' in a vector of strings,
    /// if a word did not have the character 'a' the operation returns `None`:
    ///
    /// ```
    /// let words = vec!["have", "a", "great", "day"];
    /// let total: Option<usize> = words.iter().map(|w| w.find('a')).sum();
    /// assert_eq!(total, Some(5));
    /// ```
    fn sum<I>(iter: I) -> Option<T>
    where
        I: Iterator<Item = Option<U>>,
    {
        iter.map(|x| x.ok_or(())).sum::<Result<_, _>>().ok()
    }
}

#[stable(feature = "iter_arith_traits_option", since = "1.37.0")]
impl<T, U> Product<Option<U>> for Option<T>
where
    T: Product<U>,
{
    /// Takes each element in the `Iterator`: if it is a `None`, no further
    /// elements are taken, and the `None` is returned. Should no `None` occur,
    /// the product of all elements is returned.
    fn product<I>(iter: I) -> Option<T>
    where
        I: Iterator<Item = Option<U>>,
    {
        iter.map(|x| x.ok_or(())).product::<Result<_, _>>().ok()
    }
}