1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
//! Functionality for ordering and comparison. //! //! This module contains various tools for ordering and comparing values. In //! summary: //! //! * [`Eq`] and [`PartialEq`] are traits that allow you to define total and //! partial equality between values, respectively. Implementing them overloads //! the `==` and `!=` operators. //! * [`Ord`] and [`PartialOrd`] are traits that allow you to define total and //! partial orderings between values, respectively. Implementing them overloads //! the `<`, `<=`, `>`, and `>=` operators. //! * [`Ordering`] is an enum returned by the main functions of [`Ord`] and //! [`PartialOrd`], and describes an ordering. //! * [`Reverse`] is a struct that allows you to easily reverse an ordering. //! * [`max`] and [`min`] are functions that build off of [`Ord`] and allow you //! to find the maximum or minimum of two values. //! //! For more details, see the respective documentation of each item in the list. //! //! [`Eq`]: trait.Eq.html //! [`PartialEq`]: trait.PartialEq.html //! [`Ord`]: trait.Ord.html //! [`PartialOrd`]: trait.PartialOrd.html //! [`Ordering`]: enum.Ordering.html //! [`Reverse`]: struct.Reverse.html //! [`max`]: fn.max.html //! [`min`]: fn.min.html #![stable(feature = "rust1", since = "1.0.0")] use self::Ordering::*; /// Trait for equality comparisons which are [partial equivalence /// relations](http://en.wikipedia.org/wiki/Partial_equivalence_relation). /// /// This trait allows for partial equality, for types that do not have a full /// equivalence relation. For example, in floating point numbers `NaN != NaN`, /// so floating point types implement `PartialEq` but not `Eq`. /// /// Formally, the equality must be (for all `a`, `b` and `c`): /// /// - symmetric: `a == b` implies `b == a`; and /// - transitive: `a == b` and `b == c` implies `a == c`. /// /// Note that these requirements mean that the trait itself must be implemented /// symmetrically and transitively: if `T: PartialEq<U>` and `U: PartialEq<V>` /// then `U: PartialEq<T>` and `T: PartialEq<V>`. /// /// ## Derivable /// /// This trait can be used with `#[derive]`. When `derive`d on structs, two /// instances are equal if all fields are equal, and not equal if any fields /// are not equal. When `derive`d on enums, each variant is equal to itself /// and not equal to the other variants. /// /// ## How can I implement `PartialEq`? /// /// PartialEq only requires the `eq` method to be implemented; `ne` is defined /// in terms of it by default. Any manual implementation of `ne` *must* respect /// the rule that `eq` is a strict inverse of `ne`; that is, `!(a == b)` if and /// only if `a != b`. /// /// Implementations of `PartialEq`, `PartialOrd`, and `Ord` *must* agree with /// each other. It's easy to accidentally make them disagree by deriving some /// of the traits and manually implementing others. /// /// An example implementation for a domain in which two books are considered /// the same book if their ISBN matches, even if the formats differ: /// /// ``` /// enum BookFormat { /// Paperback, /// Hardback, /// Ebook, /// } /// /// struct Book { /// isbn: i32, /// format: BookFormat, /// } /// /// impl PartialEq for Book { /// fn eq(&self, other: &Self) -> bool { /// self.isbn == other.isbn /// } /// } /// /// let b1 = Book { isbn: 3, format: BookFormat::Paperback }; /// let b2 = Book { isbn: 3, format: BookFormat::Ebook }; /// let b3 = Book { isbn: 10, format: BookFormat::Paperback }; /// /// assert!(b1 == b2); /// assert!(b1 != b3); /// ``` /// /// ## How can I compare two different types? /// /// The type you can compare with is controlled by `PartialEq`'s type parameter. /// For example, let's tweak our previous code a bit: /// /// ``` /// // The derive implements <BookFormat> == <BookFormat> comparisons /// #[derive(PartialEq)] /// enum BookFormat { /// Paperback, /// Hardback, /// Ebook, /// } /// /// struct Book { /// isbn: i32, /// format: BookFormat, /// } /// /// // Implement <Book> == <BookFormat> comparisons /// impl PartialEq<BookFormat> for Book { /// fn eq(&self, other: &BookFormat) -> bool { /// self.format == *other /// } /// } /// /// // Implement <BookFormat> == <Book> comparisons /// impl PartialEq<Book> for BookFormat { /// fn eq(&self, other: &Book) -> bool { /// *self == other.format /// } /// } /// /// let b1 = Book { isbn: 3, format: BookFormat::Paperback }; /// /// assert!(b1 == BookFormat::Paperback); /// assert!(BookFormat::Ebook != b1); /// ``` /// /// By changing `impl PartialEq for Book` to `impl PartialEq<BookFormat> for Book`, /// we allow `BookFormat`s to be compared with `Book`s. /// /// You can also combine these implementations to let the `==` operator work with /// two different types: /// /// ``` /// #[derive(PartialEq)] /// enum BookFormat { /// Paperback, /// Hardback, /// Ebook, /// } /// /// struct Book { /// isbn: i32, /// format: BookFormat, /// } /// /// impl PartialEq<BookFormat> for Book { /// fn eq(&self, other: &BookFormat) -> bool { /// self.format == *other /// } /// } /// /// impl PartialEq<Book> for BookFormat { /// fn eq(&self, other: &Book) -> bool { /// *self == other.format /// } /// } /// /// impl PartialEq for Book { /// fn eq(&self, other: &Book) -> bool { /// self.isbn == other.isbn /// } /// } /// /// let b1 = Book { isbn: 3, format: BookFormat::Paperback }; /// let b2 = Book { isbn: 3, format: BookFormat::Ebook }; /// /// assert!(b1 == BookFormat::Paperback); /// assert!(BookFormat::Ebook != b1); /// assert!(b1 == b2); /// ``` /// /// # Examples /// /// ``` /// let x: u32 = 0; /// let y: u32 = 1; /// /// assert_eq!(x == y, false); /// assert_eq!(x.eq(&y), false); /// ``` #[lang = "eq"] #[stable(feature = "rust1", since = "1.0.0")] #[doc(alias = "==")] #[doc(alias = "!=")] #[rustc_on_unimplemented( message="can't compare `{Self}` with `{Rhs}`", label="no implementation for `{Self} == {Rhs}`", )] pub trait PartialEq<Rhs: ?Sized = Self> { /// This method tests for `self` and `other` values to be equal, and is used /// by `==`. #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn eq(&self, other: &Rhs) -> bool; /// This method tests for `!=`. #[inline] #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn ne(&self, other: &Rhs) -> bool { !self.eq(other) } } /// Derive macro generating an impl of the trait `PartialEq`. #[rustc_builtin_macro] #[cfg_attr(bootstrap, rustc_macro_transparency = "semitransparent")] #[stable(feature = "builtin_macro_prelude", since = "1.38.0")] #[allow_internal_unstable(core_intrinsics)] pub macro PartialEq($item:item) { /* compiler built-in */ } /// Trait for equality comparisons which are [equivalence relations]( /// https://en.wikipedia.org/wiki/Equivalence_relation). /// /// This means, that in addition to `a == b` and `a != b` being strict inverses, the equality must /// be (for all `a`, `b` and `c`): /// /// - reflexive: `a == a`; /// - symmetric: `a == b` implies `b == a`; and /// - transitive: `a == b` and `b == c` implies `a == c`. /// /// This property cannot be checked by the compiler, and therefore `Eq` implies /// `PartialEq`, and has no extra methods. /// /// ## Derivable /// /// This trait can be used with `#[derive]`. When `derive`d, because `Eq` has /// no extra methods, it is only informing the compiler that this is an /// equivalence relation rather than a partial equivalence relation. Note that /// the `derive` strategy requires all fields are `Eq`, which isn't /// always desired. /// /// ## How can I implement `Eq`? /// /// If you cannot use the `derive` strategy, specify that your type implements /// `Eq`, which has no methods: /// /// ``` /// enum BookFormat { Paperback, Hardback, Ebook } /// struct Book { /// isbn: i32, /// format: BookFormat, /// } /// impl PartialEq for Book { /// fn eq(&self, other: &Self) -> bool { /// self.isbn == other.isbn /// } /// } /// impl Eq for Book {} /// ``` #[doc(alias = "==")] #[doc(alias = "!=")] #[stable(feature = "rust1", since = "1.0.0")] pub trait Eq: PartialEq<Self> { // this method is used solely by #[deriving] to assert // that every component of a type implements #[deriving] // itself, the current deriving infrastructure means doing this // assertion without using a method on this trait is nearly // impossible. // // This should never be implemented by hand. #[doc(hidden)] #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn assert_receiver_is_total_eq(&self) {} } /// Derive macro generating an impl of the trait `Eq`. #[rustc_builtin_macro] #[cfg_attr(bootstrap, rustc_macro_transparency = "semitransparent")] #[stable(feature = "builtin_macro_prelude", since = "1.38.0")] #[allow_internal_unstable(core_intrinsics, derive_eq)] pub macro Eq($item:item) { /* compiler built-in */ } // FIXME: this struct is used solely by #[derive] to // assert that every component of a type implements Eq. // // This struct should never appear in user code. #[doc(hidden)] #[allow(missing_debug_implementations)] #[unstable(feature = "derive_eq", reason = "deriving hack, should not be public", issue = "0")] pub struct AssertParamIsEq<T: Eq + ?Sized> { _field: crate::marker::PhantomData<T> } /// An `Ordering` is the result of a comparison between two values. /// /// # Examples /// /// ``` /// use std::cmp::Ordering; /// /// let result = 1.cmp(&2); /// assert_eq!(Ordering::Less, result); /// /// let result = 1.cmp(&1); /// assert_eq!(Ordering::Equal, result); /// /// let result = 2.cmp(&1); /// assert_eq!(Ordering::Greater, result); /// ``` #[derive(Clone, Copy, PartialEq, Debug, Hash)] #[stable(feature = "rust1", since = "1.0.0")] pub enum Ordering { /// An ordering where a compared value is less than another. #[stable(feature = "rust1", since = "1.0.0")] Less = -1, /// An ordering where a compared value is equal to another. #[stable(feature = "rust1", since = "1.0.0")] Equal = 0, /// An ordering where a compared value is greater than another. #[stable(feature = "rust1", since = "1.0.0")] Greater = 1, } impl Ordering { /// Reverses the `Ordering`. /// /// * `Less` becomes `Greater`. /// * `Greater` becomes `Less`. /// * `Equal` becomes `Equal`. /// /// # Examples /// /// Basic behavior: /// /// ``` /// use std::cmp::Ordering; /// /// assert_eq!(Ordering::Less.reverse(), Ordering::Greater); /// assert_eq!(Ordering::Equal.reverse(), Ordering::Equal); /// assert_eq!(Ordering::Greater.reverse(), Ordering::Less); /// ``` /// /// This method can be used to reverse a comparison: /// /// ``` /// let data: &mut [_] = &mut [2, 10, 5, 8]; /// /// // sort the array from largest to smallest. /// data.sort_by(|a, b| a.cmp(b).reverse()); /// /// let b: &mut [_] = &mut [10, 8, 5, 2]; /// assert!(data == b); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn reverse(self) -> Ordering { match self { Less => Greater, Equal => Equal, Greater => Less, } } /// Chains two orderings. /// /// Returns `self` when it's not `Equal`. Otherwise returns `other`. /// # Examples /// /// ``` /// use std::cmp::Ordering; /// /// let result = Ordering::Equal.then(Ordering::Less); /// assert_eq!(result, Ordering::Less); /// /// let result = Ordering::Less.then(Ordering::Equal); /// assert_eq!(result, Ordering::Less); /// /// let result = Ordering::Less.then(Ordering::Greater); /// assert_eq!(result, Ordering::Less); /// /// let result = Ordering::Equal.then(Ordering::Equal); /// assert_eq!(result, Ordering::Equal); /// /// let x: (i64, i64, i64) = (1, 2, 7); /// let y: (i64, i64, i64) = (1, 5, 3); /// let result = x.0.cmp(&y.0).then(x.1.cmp(&y.1)).then(x.2.cmp(&y.2)); /// /// assert_eq!(result, Ordering::Less); /// ``` #[inline] #[stable(feature = "ordering_chaining", since = "1.17.0")] pub fn then(self, other: Ordering) -> Ordering { match self { Equal => other, _ => self, } } /// Chains the ordering with the given function. /// /// Returns `self` when it's not `Equal`. Otherwise calls `f` and returns /// the result. /// /// # Examples /// /// ``` /// use std::cmp::Ordering; /// /// let result = Ordering::Equal.then_with(|| Ordering::Less); /// assert_eq!(result, Ordering::Less); /// /// let result = Ordering::Less.then_with(|| Ordering::Equal); /// assert_eq!(result, Ordering::Less); /// /// let result = Ordering::Less.then_with(|| Ordering::Greater); /// assert_eq!(result, Ordering::Less); /// /// let result = Ordering::Equal.then_with(|| Ordering::Equal); /// assert_eq!(result, Ordering::Equal); /// /// let x: (i64, i64, i64) = (1, 2, 7); /// let y: (i64, i64, i64) = (1, 5, 3); /// let result = x.0.cmp(&y.0).then_with(|| x.1.cmp(&y.1)).then_with(|| x.2.cmp(&y.2)); /// /// assert_eq!(result, Ordering::Less); /// ``` #[inline] #[stable(feature = "ordering_chaining", since = "1.17.0")] pub fn then_with<F: FnOnce() -> Ordering>(self, f: F) -> Ordering { match self { Equal => f(), _ => self, } } } /// A helper struct for reverse ordering. /// /// This struct is a helper to be used with functions like `Vec::sort_by_key` and /// can be used to reverse order a part of a key. /// /// Example usage: /// /// ``` /// use std::cmp::Reverse; /// /// let mut v = vec![1, 2, 3, 4, 5, 6]; /// v.sort_by_key(|&num| (num > 3, Reverse(num))); /// assert_eq!(v, vec![3, 2, 1, 6, 5, 4]); /// ``` #[derive(PartialEq, Eq, Debug, Copy, Clone, Default, Hash)] #[stable(feature = "reverse_cmp_key", since = "1.19.0")] pub struct Reverse<T>(#[stable(feature = "reverse_cmp_key", since = "1.19.0")] pub T); #[stable(feature = "reverse_cmp_key", since = "1.19.0")] impl<T: PartialOrd> PartialOrd for Reverse<T> { #[inline] fn partial_cmp(&self, other: &Reverse<T>) -> Option<Ordering> { other.0.partial_cmp(&self.0) } #[inline] fn lt(&self, other: &Self) -> bool { other.0 < self.0 } #[inline] fn le(&self, other: &Self) -> bool { other.0 <= self.0 } #[inline] fn ge(&self, other: &Self) -> bool { other.0 >= self.0 } #[inline] fn gt(&self, other: &Self) -> bool { other.0 > self.0 } } #[stable(feature = "reverse_cmp_key", since = "1.19.0")] impl<T: Ord> Ord for Reverse<T> { #[inline] fn cmp(&self, other: &Reverse<T>) -> Ordering { other.0.cmp(&self.0) } } /// Trait for types that form a [total order](https://en.wikipedia.org/wiki/Total_order). /// /// An order is a total order if it is (for all `a`, `b` and `c`): /// /// - total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true; and /// - transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. /// /// ## Derivable /// /// This trait can be used with `#[derive]`. When `derive`d on structs, it will produce a /// lexicographic ordering based on the top-to-bottom declaration order of the struct's members. /// When `derive`d on enums, variants are ordered by their top-to-bottom declaration order. /// /// ## How can I implement `Ord`? /// /// `Ord` requires that the type also be `PartialOrd` and `Eq` (which requires `PartialEq`). /// /// Then you must define an implementation for `cmp()`. You may find it useful to use /// `cmp()` on your type's fields. /// /// Implementations of `PartialEq`, `PartialOrd`, and `Ord` *must* /// agree with each other. That is, `a.cmp(b) == Ordering::Equal` if /// and only if `a == b` and `Some(a.cmp(b)) == a.partial_cmp(b)` for /// all `a` and `b`. It's easy to accidentally make them disagree by /// deriving some of the traits and manually implementing others. /// /// Here's an example where you want to sort people by height only, disregarding `id` /// and `name`: /// /// ``` /// use std::cmp::Ordering; /// /// #[derive(Eq)] /// struct Person { /// id: u32, /// name: String, /// height: u32, /// } /// /// impl Ord for Person { /// fn cmp(&self, other: &Self) -> Ordering { /// self.height.cmp(&other.height) /// } /// } /// /// impl PartialOrd for Person { /// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { /// Some(self.cmp(other)) /// } /// } /// /// impl PartialEq for Person { /// fn eq(&self, other: &Self) -> bool { /// self.height == other.height /// } /// } /// ``` #[lang = "ord"] #[doc(alias = "<")] #[doc(alias = ">")] #[doc(alias = "<=")] #[doc(alias = ">=")] #[stable(feature = "rust1", since = "1.0.0")] pub trait Ord: Eq + PartialOrd<Self> { /// This method returns an `Ordering` between `self` and `other`. /// /// By convention, `self.cmp(&other)` returns the ordering matching the expression /// `self <operator> other` if true. /// /// # Examples /// /// ``` /// use std::cmp::Ordering; /// /// assert_eq!(5.cmp(&10), Ordering::Less); /// assert_eq!(10.cmp(&5), Ordering::Greater); /// assert_eq!(5.cmp(&5), Ordering::Equal); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn cmp(&self, other: &Self) -> Ordering; /// Compares and returns the maximum of two values. /// /// Returns the second argument if the comparison determines them to be equal. /// /// # Examples /// /// ``` /// assert_eq!(2, 1.max(2)); /// assert_eq!(2, 2.max(2)); /// ``` #[stable(feature = "ord_max_min", since = "1.21.0")] #[inline] fn max(self, other: Self) -> Self where Self: Sized { max_by(self, other, Ord::cmp) } /// Compares and returns the minimum of two values. /// /// Returns the first argument if the comparison determines them to be equal. /// /// # Examples /// /// ``` /// assert_eq!(1, 1.min(2)); /// assert_eq!(2, 2.min(2)); /// ``` #[stable(feature = "ord_max_min", since = "1.21.0")] #[inline] fn min(self, other: Self) -> Self where Self: Sized { min_by(self, other, Ord::cmp) } /// Restrict a value to a certain interval. /// /// Returns `max` if `self` is greater than `max`, and `min` if `self` is /// less than `min`. Otherwise this returns `self`. /// /// # Panics /// /// Panics if `min > max`. /// /// # Examples /// /// ``` /// #![feature(clamp)] /// /// assert!((-3).clamp(-2, 1) == -2); /// assert!(0.clamp(-2, 1) == 0); /// assert!(2.clamp(-2, 1) == 1); /// ``` #[unstable(feature = "clamp", issue = "44095")] fn clamp(self, min: Self, max: Self) -> Self where Self: Sized { assert!(min <= max); if self < min { min } else if self > max { max } else { self } } } /// Derive macro generating an impl of the trait `Ord`. #[rustc_builtin_macro] #[cfg_attr(bootstrap, rustc_macro_transparency = "semitransparent")] #[stable(feature = "builtin_macro_prelude", since = "1.38.0")] #[allow_internal_unstable(core_intrinsics)] pub macro Ord($item:item) { /* compiler built-in */ } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for Ordering {} #[stable(feature = "rust1", since = "1.0.0")] impl Ord for Ordering { #[inline] fn cmp(&self, other: &Ordering) -> Ordering { (*self as i32).cmp(&(*other as i32)) } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for Ordering { #[inline] fn partial_cmp(&self, other: &Ordering) -> Option<Ordering> { (*self as i32).partial_cmp(&(*other as i32)) } } /// Trait for values that can be compared for a sort-order. /// /// The comparison must satisfy, for all `a`, `b` and `c`: /// /// - antisymmetry: if `a < b` then `!(a > b)`, as well as `a > b` implying `!(a < b)`; and /// - transitivity: `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. /// /// Note that these requirements mean that the trait itself must be implemented symmetrically and /// transitively: if `T: PartialOrd<U>` and `U: PartialOrd<V>` then `U: PartialOrd<T>` and `T: /// PartialOrd<V>`. /// /// ## Derivable /// /// This trait can be used with `#[derive]`. When `derive`d on structs, it will produce a /// lexicographic ordering based on the top-to-bottom declaration order of the struct's members. /// When `derive`d on enums, variants are ordered by their top-to-bottom declaration order. /// /// ## How can I implement `PartialOrd`? /// /// `PartialOrd` only requires implementation of the `partial_cmp` method, with the others /// generated from default implementations. /// /// However it remains possible to implement the others separately for types which do not have a /// total order. For example, for floating point numbers, `NaN < 0 == false` and `NaN >= 0 == /// false` (cf. IEEE 754-2008 section 5.11). /// /// `PartialOrd` requires your type to be `PartialEq`. /// /// Implementations of `PartialEq`, `PartialOrd`, and `Ord` *must* agree with each other. It's /// easy to accidentally make them disagree by deriving some of the traits and manually /// implementing others. /// /// If your type is `Ord`, you can implement `partial_cmp()` by using `cmp()`: /// /// ``` /// use std::cmp::Ordering; /// /// #[derive(Eq)] /// struct Person { /// id: u32, /// name: String, /// height: u32, /// } /// /// impl PartialOrd for Person { /// fn partial_cmp(&self, other: &Person) -> Option<Ordering> { /// Some(self.cmp(other)) /// } /// } /// /// impl Ord for Person { /// fn cmp(&self, other: &Person) -> Ordering { /// self.height.cmp(&other.height) /// } /// } /// /// impl PartialEq for Person { /// fn eq(&self, other: &Person) -> bool { /// self.height == other.height /// } /// } /// ``` /// /// You may also find it useful to use `partial_cmp()` on your type's fields. Here /// is an example of `Person` types who have a floating-point `height` field that /// is the only field to be used for sorting: /// /// ``` /// use std::cmp::Ordering; /// /// struct Person { /// id: u32, /// name: String, /// height: f64, /// } /// /// impl PartialOrd for Person { /// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { /// self.height.partial_cmp(&other.height) /// } /// } /// /// impl PartialEq for Person { /// fn eq(&self, other: &Self) -> bool { /// self.height == other.height /// } /// } /// ``` /// /// # Examples /// /// ``` /// let x : u32 = 0; /// let y : u32 = 1; /// /// assert_eq!(x < y, true); /// assert_eq!(x.lt(&y), true); /// ``` #[lang = "partial_ord"] #[stable(feature = "rust1", since = "1.0.0")] #[doc(alias = ">")] #[doc(alias = "<")] #[doc(alias = "<=")] #[doc(alias = ">=")] #[rustc_on_unimplemented( message="can't compare `{Self}` with `{Rhs}`", label="no implementation for `{Self} < {Rhs}` and `{Self} > {Rhs}`", )] pub trait PartialOrd<Rhs: ?Sized = Self>: PartialEq<Rhs> { /// This method returns an ordering between `self` and `other` values if one exists. /// /// # Examples /// /// ``` /// use std::cmp::Ordering; /// /// let result = 1.0.partial_cmp(&2.0); /// assert_eq!(result, Some(Ordering::Less)); /// /// let result = 1.0.partial_cmp(&1.0); /// assert_eq!(result, Some(Ordering::Equal)); /// /// let result = 2.0.partial_cmp(&1.0); /// assert_eq!(result, Some(Ordering::Greater)); /// ``` /// /// When comparison is impossible: /// /// ``` /// let result = std::f64::NAN.partial_cmp(&1.0); /// assert_eq!(result, None); /// ``` #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>; /// This method tests less than (for `self` and `other`) and is used by the `<` operator. /// /// # Examples /// /// ``` /// let result = 1.0 < 2.0; /// assert_eq!(result, true); /// /// let result = 2.0 < 1.0; /// assert_eq!(result, false); /// ``` #[inline] #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn lt(&self, other: &Rhs) -> bool { match self.partial_cmp(other) { Some(Less) => true, _ => false, } } /// This method tests less than or equal to (for `self` and `other`) and is used by the `<=` /// operator. /// /// # Examples /// /// ``` /// let result = 1.0 <= 2.0; /// assert_eq!(result, true); /// /// let result = 2.0 <= 2.0; /// assert_eq!(result, true); /// ``` #[inline] #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn le(&self, other: &Rhs) -> bool { match self.partial_cmp(other) { Some(Less) | Some(Equal) => true, _ => false, } } /// This method tests greater than (for `self` and `other`) and is used by the `>` operator. /// /// # Examples /// /// ``` /// let result = 1.0 > 2.0; /// assert_eq!(result, false); /// /// let result = 2.0 > 2.0; /// assert_eq!(result, false); /// ``` #[inline] #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn gt(&self, other: &Rhs) -> bool { match self.partial_cmp(other) { Some(Greater) => true, _ => false, } } /// This method tests greater than or equal to (for `self` and `other`) and is used by the `>=` /// operator. /// /// # Examples /// /// ``` /// let result = 2.0 >= 1.0; /// assert_eq!(result, true); /// /// let result = 2.0 >= 2.0; /// assert_eq!(result, true); /// ``` #[inline] #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn ge(&self, other: &Rhs) -> bool { match self.partial_cmp(other) { Some(Greater) | Some(Equal) => true, _ => false, } } } /// Derive macro generating an impl of the trait `PartialOrd`. #[rustc_builtin_macro] #[cfg_attr(bootstrap, rustc_macro_transparency = "semitransparent")] #[stable(feature = "builtin_macro_prelude", since = "1.38.0")] #[allow_internal_unstable(core_intrinsics)] pub macro PartialOrd($item:item) { /* compiler built-in */ } /// Compares and returns the minimum of two values. /// /// Returns the first argument if the comparison determines them to be equal. /// /// Internally uses an alias to `Ord::min`. /// /// # Examples /// /// ``` /// use std::cmp; /// /// assert_eq!(1, cmp::min(1, 2)); /// assert_eq!(2, cmp::min(2, 2)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn min<T: Ord>(v1: T, v2: T) -> T { v1.min(v2) } /// Returns the minimum of two values with respect to the specified comparison function. /// /// Returns the first argument if the comparison determines them to be equal. /// /// # Examples /// /// ``` /// #![feature(cmp_min_max_by)] /// /// use std::cmp; /// /// assert_eq!(cmp::min_by(-2, 1, |x: &i32, y: &i32| x.abs().cmp(&y.abs())), 1); /// assert_eq!(cmp::min_by(-2, 2, |x: &i32, y: &i32| x.abs().cmp(&y.abs())), -2); /// ``` #[inline] #[unstable(feature = "cmp_min_max_by", issue = "64460")] pub fn min_by<T, F: FnOnce(&T, &T) -> Ordering>(v1: T, v2: T, compare: F) -> T { match compare(&v1, &v2) { Ordering::Less | Ordering::Equal => v1, Ordering::Greater => v2, } } /// Returns the element that gives the minimum value from the specified function. /// /// Returns the first argument if the comparison determines them to be equal. /// /// # Examples /// /// ``` /// #![feature(cmp_min_max_by)] /// /// use std::cmp; /// /// assert_eq!(cmp::min_by_key(-2, 1, |x: &i32| x.abs()), 1); /// assert_eq!(cmp::min_by_key(-2, 2, |x: &i32| x.abs()), -2); /// ``` #[inline] #[unstable(feature = "cmp_min_max_by", issue = "64460")] pub fn min_by_key<T, F: FnMut(&T) -> K, K: Ord>(v1: T, v2: T, mut f: F) -> T { min_by(v1, v2, |v1, v2| f(v1).cmp(&f(v2))) } /// Compares and returns the maximum of two values. /// /// Returns the second argument if the comparison determines them to be equal. /// /// Internally uses an alias to `Ord::max`. /// /// # Examples /// /// ``` /// use std::cmp; /// /// assert_eq!(2, cmp::max(1, 2)); /// assert_eq!(2, cmp::max(2, 2)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn max<T: Ord>(v1: T, v2: T) -> T { v1.max(v2) } /// Returns the maximum of two values with respect to the specified comparison function. /// /// Returns the second argument if the comparison determines them to be equal. /// /// # Examples /// /// ``` /// #![feature(cmp_min_max_by)] /// /// use std::cmp; /// /// assert_eq!(cmp::max_by(-2, 1, |x: &i32, y: &i32| x.abs().cmp(&y.abs())), -2); /// assert_eq!(cmp::max_by(-2, 2, |x: &i32, y: &i32| x.abs().cmp(&y.abs())), 2); /// ``` #[inline] #[unstable(feature = "cmp_min_max_by", issue = "64460")] pub fn max_by<T, F: FnOnce(&T, &T) -> Ordering>(v1: T, v2: T, compare: F) -> T { match compare(&v1, &v2) { Ordering::Less | Ordering::Equal => v2, Ordering::Greater => v1, } } /// Returns the element that gives the maximum value from the specified function. /// /// Returns the second argument if the comparison determines them to be equal. /// /// # Examples /// /// ``` /// #![feature(cmp_min_max_by)] /// /// use std::cmp; /// /// assert_eq!(cmp::max_by_key(-2, 1, |x: &i32| x.abs()), -2); /// assert_eq!(cmp::max_by_key(-2, 2, |x: &i32| x.abs()), 2); /// ``` #[inline] #[unstable(feature = "cmp_min_max_by", issue = "64460")] pub fn max_by_key<T, F: FnMut(&T) -> K, K: Ord>(v1: T, v2: T, mut f: F) -> T { max_by(v1, v2, |v1, v2| f(v1).cmp(&f(v2))) } // Implementation of PartialEq, Eq, PartialOrd and Ord for primitive types mod impls { use crate::cmp::Ordering::{self, Less, Greater, Equal}; macro_rules! partial_eq_impl { ($($t:ty)*) => ($( #[stable(feature = "rust1", since = "1.0.0")] impl PartialEq for $t { #[inline] fn eq(&self, other: &$t) -> bool { (*self) == (*other) } #[inline] fn ne(&self, other: &$t) -> bool { (*self) != (*other) } } )*) } #[stable(feature = "rust1", since = "1.0.0")] impl PartialEq for () { #[inline] fn eq(&self, _other: &()) -> bool { true } #[inline] fn ne(&self, _other: &()) -> bool { false } } partial_eq_impl! { bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } macro_rules! eq_impl { ($($t:ty)*) => ($( #[stable(feature = "rust1", since = "1.0.0")] impl Eq for $t {} )*) } eq_impl! { () bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 } macro_rules! partial_ord_impl { ($($t:ty)*) => ($( #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for $t { #[inline] fn partial_cmp(&self, other: &$t) -> Option<Ordering> { match (self <= other, self >= other) { (false, false) => None, (false, true) => Some(Greater), (true, false) => Some(Less), (true, true) => Some(Equal), } } #[inline] fn lt(&self, other: &$t) -> bool { (*self) < (*other) } #[inline] fn le(&self, other: &$t) -> bool { (*self) <= (*other) } #[inline] fn ge(&self, other: &$t) -> bool { (*self) >= (*other) } #[inline] fn gt(&self, other: &$t) -> bool { (*self) > (*other) } } )*) } #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for () { #[inline] fn partial_cmp(&self, _: &()) -> Option<Ordering> { Some(Equal) } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for bool { #[inline] fn partial_cmp(&self, other: &bool) -> Option<Ordering> { (*self as u8).partial_cmp(&(*other as u8)) } } partial_ord_impl! { f32 f64 } macro_rules! ord_impl { ($($t:ty)*) => ($( #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for $t { #[inline] fn partial_cmp(&self, other: &$t) -> Option<Ordering> { Some(self.cmp(other)) } #[inline] fn lt(&self, other: &$t) -> bool { (*self) < (*other) } #[inline] fn le(&self, other: &$t) -> bool { (*self) <= (*other) } #[inline] fn ge(&self, other: &$t) -> bool { (*self) >= (*other) } #[inline] fn gt(&self, other: &$t) -> bool { (*self) > (*other) } } #[stable(feature = "rust1", since = "1.0.0")] impl Ord for $t { #[inline] fn cmp(&self, other: &$t) -> Ordering { // The order here is important to generate more optimal assembly. // See <https://github.com/rust-lang/rust/issues/63758> for more info. if *self < *other { Less } else if *self == *other { Equal } else { Greater } } } )*) } #[stable(feature = "rust1", since = "1.0.0")] impl Ord for () { #[inline] fn cmp(&self, _other: &()) -> Ordering { Equal } } #[stable(feature = "rust1", since = "1.0.0")] impl Ord for bool { #[inline] fn cmp(&self, other: &bool) -> Ordering { (*self as u8).cmp(&(*other as u8)) } } ord_impl! { char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 } #[unstable(feature = "never_type", issue = "35121")] impl PartialEq for ! { fn eq(&self, _: &!) -> bool { *self } } #[unstable(feature = "never_type", issue = "35121")] impl Eq for ! {} #[unstable(feature = "never_type", issue = "35121")] impl PartialOrd for ! { fn partial_cmp(&self, _: &!) -> Option<Ordering> { *self } } #[unstable(feature = "never_type", issue = "35121")] impl Ord for ! { fn cmp(&self, _: &!) -> Ordering { *self } } // & pointers #[stable(feature = "rust1", since = "1.0.0")] impl<A: ?Sized, B: ?Sized> PartialEq<&B> for &A where A: PartialEq<B> { #[inline] fn eq(&self, other: & &B) -> bool { PartialEq::eq(*self, *other) } #[inline] fn ne(&self, other: & &B) -> bool { PartialEq::ne(*self, *other) } } #[stable(feature = "rust1", since = "1.0.0")] impl<A: ?Sized, B: ?Sized> PartialOrd<&B> for &A where A: PartialOrd<B> { #[inline] fn partial_cmp(&self, other: &&B) -> Option<Ordering> { PartialOrd::partial_cmp(*self, *other) } #[inline] fn lt(&self, other: & &B) -> bool { PartialOrd::lt(*self, *other) } #[inline] fn le(&self, other: & &B) -> bool { PartialOrd::le(*self, *other) } #[inline] fn ge(&self, other: & &B) -> bool { PartialOrd::ge(*self, *other) } #[inline] fn gt(&self, other: & &B) -> bool { PartialOrd::gt(*self, *other) } } #[stable(feature = "rust1", since = "1.0.0")] impl<A: ?Sized> Ord for &A where A: Ord { #[inline] fn cmp(&self, other: &Self) -> Ordering { Ord::cmp(*self, *other) } } #[stable(feature = "rust1", since = "1.0.0")] impl<A: ?Sized> Eq for &A where A: Eq {} // &mut pointers #[stable(feature = "rust1", since = "1.0.0")] impl<A: ?Sized, B: ?Sized> PartialEq<&mut B> for &mut A where A: PartialEq<B> { #[inline] fn eq(&self, other: &&mut B) -> bool { PartialEq::eq(*self, *other) } #[inline] fn ne(&self, other: &&mut B) -> bool { PartialEq::ne(*self, *other) } } #[stable(feature = "rust1", since = "1.0.0")] impl<A: ?Sized, B: ?Sized> PartialOrd<&mut B> for &mut A where A: PartialOrd<B> { #[inline] fn partial_cmp(&self, other: &&mut B) -> Option<Ordering> { PartialOrd::partial_cmp(*self, *other) } #[inline] fn lt(&self, other: &&mut B) -> bool { PartialOrd::lt(*self, *other) } #[inline] fn le(&self, other: &&mut B) -> bool { PartialOrd::le(*self, *other) } #[inline] fn ge(&self, other: &&mut B) -> bool { PartialOrd::ge(*self, *other) } #[inline] fn gt(&self, other: &&mut B) -> bool { PartialOrd::gt(*self, *other) } } #[stable(feature = "rust1", since = "1.0.0")] impl<A: ?Sized> Ord for &mut A where A: Ord { #[inline] fn cmp(&self, other: &Self) -> Ordering { Ord::cmp(*self, *other) } } #[stable(feature = "rust1", since = "1.0.0")] impl<A: ?Sized> Eq for &mut A where A: Eq {} #[stable(feature = "rust1", since = "1.0.0")] impl<A: ?Sized, B: ?Sized> PartialEq<&mut B> for &A where A: PartialEq<B> { #[inline] fn eq(&self, other: &&mut B) -> bool { PartialEq::eq(*self, *other) } #[inline] fn ne(&self, other: &&mut B) -> bool { PartialEq::ne(*self, *other) } } #[stable(feature = "rust1", since = "1.0.0")] impl<A: ?Sized, B: ?Sized> PartialEq<&B> for &mut A where A: PartialEq<B> { #[inline] fn eq(&self, other: &&B) -> bool { PartialEq::eq(*self, *other) } #[inline] fn ne(&self, other: &&B) -> bool { PartialEq::ne(*self, *other) } } }