1.0.0[][src]Struct std::sync::Arc

#[lang = "arc"]
pub struct Arc<T> where
    T: ?Sized
{ /* fields omitted */ }

A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically Reference Counted'.

The type Arc<T> provides shared ownership of a value of type T, allocated in the heap. Invoking clone on Arc produces a new Arc instance, which points to the same value on the heap as the source Arc, while increasing a reference count. When the last Arc pointer to a given value is destroyed, the pointed-to value is also destroyed.

Shared references in Rust disallow mutation by default, and Arc is no exception: you cannot generally obtain a mutable reference to something inside an Arc. If you need to mutate through an Arc, use Mutex, RwLock, or one of the Atomic types.

Thread Safety

Unlike Rc<T>, Arc<T> uses atomic operations for its reference counting. This means that it is thread-safe. The disadvantage is that atomic operations are more expensive than ordinary memory accesses. If you are not sharing reference-counted values between threads, consider using Rc<T> for lower overhead. Rc<T> is a safe default, because the compiler will catch any attempt to send an Rc<T> between threads. However, a library might choose Arc<T> in order to give library consumers more flexibility.

Arc<T> will implement Send and Sync as long as the T implements Send and Sync. Why can't you put a non-thread-safe type T in an Arc<T> to make it thread-safe? This may be a bit counter-intuitive at first: after all, isn't the point of Arc<T> thread safety? The key is this: Arc<T> makes it thread safe to have multiple ownership of the same data, but it doesn't add thread safety to its data. Consider Arc<RefCell<T>>. RefCell<T> isn't Sync, and if Arc<T> was always Send, Arc<RefCell<T>> would be as well. But then we'd have a problem: RefCell<T> is not thread safe; it keeps track of the borrowing count using non-atomic operations.

In the end, this means that you may need to pair Arc<T> with some sort of std::sync type, usually Mutex<T>.

Breaking cycles with Weak

The downgrade method can be used to create a non-owning Weak pointer. A Weak pointer can be upgraded to an Arc, but this will return None if the value has already been dropped.

A cycle between Arc pointers will never be deallocated. For this reason, Weak is used to break cycles. For example, a tree could have strong Arc pointers from parent nodes to children, and Weak pointers from children back to their parents.

Cloning references

Creating a new reference from an existing reference counted pointer is done using the Clone trait implemented for Arc<T> and Weak<T>.

use std::sync::Arc;
let foo = Arc::new(vec![1.0, 2.0, 3.0]);
// The two syntaxes below are equivalent.
let a = foo.clone();
let b = Arc::clone(&foo);
// a, b, and foo are all Arcs that point to the same memory locationRun

Deref behavior

Arc<T> automatically dereferences to T (via the Deref trait), so you can call T's methods on a value of type Arc<T>. To avoid name clashes with T's methods, the methods of Arc<T> itself are associated functions, called using function-like syntax:

use std::sync::Arc;
let my_arc = Arc::new(());

Arc::downgrade(&my_arc);Run

Weak<T> does not auto-dereference to T, because the value may have already been destroyed.

Examples

Sharing some immutable data between threads:

use std::sync::Arc;
use std::thread;

let five = Arc::new(5);

for _ in 0..10 {
    let five = Arc::clone(&five);

    thread::spawn(move || {
        println!("{:?}", five);
    });
}Run

Sharing a mutable AtomicUsize:

use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::thread;

let val = Arc::new(AtomicUsize::new(5));

for _ in 0..10 {
    let val = Arc::clone(&val);

    thread::spawn(move || {
        let v = val.fetch_add(1, Ordering::SeqCst);
        println!("{:?}", v);
    });
}Run

See the rc documentation for more examples of reference counting in general.

Methods

impl<T> Arc<T>[src]

pub fn new(data: T) -> Arc<T>[src]

Constructs a new Arc<T>.

Examples

use std::sync::Arc;

let five = Arc::new(5);Run

pub fn new_uninit() -> Arc<MaybeUninit<T>>[src]

🔬 This is a nightly-only experimental API. (new_uninit #63291)

Constructs a new Arc with uninitialized contents.

Examples

#![feature(new_uninit)]
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut five = Arc::<u32>::new_uninit();

let five = unsafe {
    // Deferred initialization:
    Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);

    five.assume_init()
};

assert_eq!(*five, 5)Run

Important traits for Pin<P>
pub fn pin(data: T) -> Pin<Arc<T>>1.33.0[src]

Constructs a new Pin<Arc<T>>. If T does not implement Unpin, then data will be pinned in memory and unable to be moved.

pub fn try_unwrap(this: Arc<T>) -> Result<T, Arc<T>>1.4.0[src]

Returns the contained value, if the Arc has exactly one strong reference.

Otherwise, an Err is returned with the same Arc that was passed in.

This will succeed even if there are outstanding weak references.

Examples

use std::sync::Arc;

let x = Arc::new(3);
assert_eq!(Arc::try_unwrap(x), Ok(3));

let x = Arc::new(4);
let _y = Arc::clone(&x);
assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);Run

impl<T> Arc<[T]>[src]

pub fn new_uninit_slice(len: usize) -> Arc<[MaybeUninit<T>]>[src]

🔬 This is a nightly-only experimental API. (new_uninit #63291)

Constructs a new reference-counted slice with uninitialized contents.

Examples

#![feature(new_uninit)]
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut values = Arc::<[u32]>::new_uninit_slice(3);

let values = unsafe {
    // Deferred initialization:
    Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
    Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
    Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);

    values.assume_init()
};

assert_eq!(*values, [1, 2, 3])Run

impl<T> Arc<MaybeUninit<T>>[src]

pub unsafe fn assume_init(self) -> Arc<T>[src]

🔬 This is a nightly-only experimental API. (new_uninit #63291)

Converts to Arc<T>.

Safety

As with MaybeUninit::assume_init, it is up to the caller to guarantee that the value really is in an initialized state. Calling this when the content is not yet fully initialized causes immediate undefined behavior.

Examples

#![feature(new_uninit)]
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut five = Arc::<u32>::new_uninit();

let five = unsafe {
    // Deferred initialization:
    Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);

    five.assume_init()
};

assert_eq!(*five, 5)Run

impl<T> Arc<[MaybeUninit<T>]>[src]

pub unsafe fn assume_init(self) -> Arc<[T]>[src]

🔬 This is a nightly-only experimental API. (new_uninit #63291)

Converts to Arc<[T]>.

Safety

As with MaybeUninit::assume_init, it is up to the caller to guarantee that the value really is in an initialized state. Calling this when the content is not yet fully initialized causes immediate undefined behavior.

Examples

#![feature(new_uninit)]
#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut values = Arc::<[u32]>::new_uninit_slice(3);

let values = unsafe {
    // Deferred initialization:
    Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
    Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
    Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);

    values.assume_init()
};

assert_eq!(*values, [1, 2, 3])Run

impl<T> Arc<T> where
    T: ?Sized
[src]

pub fn into_raw(this: Arc<T>) -> *const T1.17.0[src]

Consumes the Arc, returning the wrapped pointer.

To avoid a memory leak the pointer must be converted back to an Arc using Arc::from_raw.

Examples

use std::sync::Arc;

let x = Arc::new("hello".to_owned());
let x_ptr = Arc::into_raw(x);
assert_eq!(unsafe { &*x_ptr }, "hello");Run

pub unsafe fn from_raw(ptr: *const T) -> Arc<T>1.17.0[src]

Constructs an Arc from a raw pointer.

The raw pointer must have been previously returned by a call to a Arc::into_raw.

This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.

Examples

use std::sync::Arc;

let x = Arc::new("hello".to_owned());
let x_ptr = Arc::into_raw(x);

unsafe {
    // Convert back to an `Arc` to prevent leak.
    let x = Arc::from_raw(x_ptr);
    assert_eq!(&*x, "hello");

    // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
}

// The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!Run

pub fn into_raw_non_null(this: Arc<T>) -> NonNull<T>[src]

🔬 This is a nightly-only experimental API. (rc_into_raw_non_null #47336)

Consumes the Arc, returning the wrapped pointer as NonNull<T>.

Examples

#![feature(rc_into_raw_non_null)]

use std::sync::Arc;

let x = Arc::new("hello".to_owned());
let ptr = Arc::into_raw_non_null(x);
let deref = unsafe { ptr.as_ref() };
assert_eq!(deref, "hello");Run

pub fn downgrade(this: &Arc<T>) -> Weak<T>1.4.0[src]

Creates a new Weak pointer to this value.

Examples

use std::sync::Arc;

let five = Arc::new(5);

let weak_five = Arc::downgrade(&five);Run

pub fn weak_count(this: &Arc<T>) -> usize1.15.0[src]

Gets the number of Weak pointers to this value.

Safety

This method by itself is safe, but using it correctly requires extra care. Another thread can change the weak count at any time, including potentially between calling this method and acting on the result.

Examples

use std::sync::Arc;

let five = Arc::new(5);
let _weak_five = Arc::downgrade(&five);

// This assertion is deterministic because we haven't shared
// the `Arc` or `Weak` between threads.
assert_eq!(1, Arc::weak_count(&five));Run

pub fn strong_count(this: &Arc<T>) -> usize1.15.0[src]

Gets the number of strong (Arc) pointers to this value.

Safety

This method by itself is safe, but using it correctly requires extra care. Another thread can change the strong count at any time, including potentially between calling this method and acting on the result.

Examples

use std::sync::Arc;

let five = Arc::new(5);
let _also_five = Arc::clone(&five);

// This assertion is deterministic because we haven't shared
// the `Arc` between threads.
assert_eq!(2, Arc::strong_count(&five));Run

pub fn ptr_eq(this: &Arc<T>, other: &Arc<T>) -> bool1.17.0[src]

Returns true if the two Arcs point to the same value (not just values that compare as equal).

Examples

use std::sync::Arc;

let five = Arc::new(5);
let same_five = Arc::clone(&five);
let other_five = Arc::new(5);

assert!(Arc::ptr_eq(&five, &same_five));
assert!(!Arc::ptr_eq(&five, &other_five));Run

impl<T> Arc<T> where
    T: Clone
[src]

Important traits for &'_ mut F
pub fn make_mut(this: &mut Arc<T>) -> &mut T1.4.0[src]

Makes a mutable reference into the given Arc.

If there are other Arc or Weak pointers to the same value, then make_mut will invoke clone on the inner value to ensure unique ownership. This is also referred to as clone-on-write.

See also get_mut, which will fail rather than cloning.

Examples

use std::sync::Arc;

let mut data = Arc::new(5);

*Arc::make_mut(&mut data) += 1;         // Won't clone anything
let mut other_data = Arc::clone(&data); // Won't clone inner data
*Arc::make_mut(&mut data) += 1;         // Clones inner data
*Arc::make_mut(&mut data) += 1;         // Won't clone anything
*Arc::make_mut(&mut other_data) *= 2;   // Won't clone anything

// Now `data` and `other_data` point to different values.
assert_eq!(*data, 8);
assert_eq!(*other_data, 12);Run

impl<T> Arc<T> where
    T: ?Sized
[src]

pub fn get_mut(this: &mut Arc<T>) -> Option<&mut T>1.4.0[src]

Returns a mutable reference to the inner value, if there are no other Arc or Weak pointers to the same value.

Returns None otherwise, because it is not safe to mutate a shared value.

See also make_mut, which will clone the inner value when it's shared.

Examples

use std::sync::Arc;

let mut x = Arc::new(3);
*Arc::get_mut(&mut x).unwrap() = 4;
assert_eq!(*x, 4);

let _y = Arc::clone(&x);
assert!(Arc::get_mut(&mut x).is_none());Run

Important traits for &'_ mut F
pub unsafe fn get_mut_unchecked(this: &mut Arc<T>) -> &mut T[src]

🔬 This is a nightly-only experimental API. (get_mut_unchecked #63292)

Returns a mutable reference to the inner value, without any check.

See also get_mut, which is safe and does appropriate checks.

Safety

Any other Arc or Weak pointers to the same value must not be dereferenced for the duration of the returned borrow. This is trivially the case if no such pointers exist, for example immediately after Arc::new.

Examples

#![feature(get_mut_unchecked)]

use std::sync::Arc;

let mut x = Arc::new(String::new());
unsafe {
    Arc::get_mut_unchecked(&mut x).push_str("foo")
}
assert_eq!(*x, "foo");Run

impl Arc<dyn Any + 'static + Sync + Send>[src]

pub fn downcast<T>(self) -> Result<Arc<T>, Arc<dyn Any + 'static + Sync + Send>> where
    T: Any + Send + Sync + 'static, 
1.29.0[src]

Attempt to downcast the Arc<dyn Any + Send + Sync> to a concrete type.

Examples

use std::any::Any;
use std::sync::Arc;

fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
    if let Ok(string) = value.downcast::<String>() {
        println!("String ({}): {}", string.len(), string);
    }
}

fn main() {
    let my_string = "Hello World".to_string();
    print_if_string(Arc::new(my_string));
    print_if_string(Arc::new(0i8));
}Run

Trait Implementations

impl<T> Eq for Arc<T> where
    T: Eq + ?Sized
[src]

impl<T> Deref for Arc<T> where
    T: ?Sized
[src]

type Target = T

The resulting type after dereferencing.

impl<'_> From<&'_ str> for Arc<str>1.21.0[src]

impl<'_, T> From<&'_ [T]> for Arc<[T]> where
    T: Clone
1.21.0[src]

impl<T> From<Vec<T>> for Arc<[T]>1.21.0[src]

impl<T> From<T> for Arc<T>1.6.0[src]

impl From<String> for Arc<str>1.21.0[src]

impl<T> From<Box<T>> for Arc<T> where
    T: ?Sized
1.21.0[src]

impl<T> Hash for Arc<T> where
    T: Hash + ?Sized
[src]

impl<T, U> CoerceUnsized<Arc<U>> for Arc<T> where
    T: Unsize<U> + ?Sized,
    U: ?Sized
[src]

impl<T> PartialEq<Arc<T>> for Arc<T> where
    T: PartialEq<T> + ?Sized
[src]

fn eq(&self, other: &Arc<T>) -> bool[src]

Equality for two Arcs.

Two Arcs are equal if their inner values are equal.

If T also implements Eq, two Arcs that point to the same value are always equal.

Examples

use std::sync::Arc;

let five = Arc::new(5);

assert!(five == Arc::new(5));Run

fn ne(&self, other: &Arc<T>) -> bool[src]

Inequality for two Arcs.

Two Arcs are unequal if their inner values are unequal.

If T also implements Eq, two Arcs that point to the same value are never unequal.

Examples

use std::sync::Arc;

let five = Arc::new(5);

assert!(five != Arc::new(6));Run

impl<T> AsRef<T> for Arc<T> where
    T: ?Sized
1.5.0[src]

impl<T> FromIterator<T> for Arc<[T]>1.37.0[src]

fn from_iter<I>(iter: I) -> Arc<[T]> where
    I: IntoIterator<Item = T>, 
[src]

Takes each element in the Iterator and collects it into an Arc<[T]>.

Performance characteristics

The general case

In the general case, collecting into Arc<[T]> is done by first collecting into a Vec<T>. That is, when writing the following:

let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();Run

this behaves as if we wrote:

let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
    .collect::<Vec<_>>() // The first set of allocations happens here.
    .into(); // A second allocation for `Arc<[T]>` happens here.Run

This will allocate as many times as needed for constructing the Vec<T> and then it will allocate once for turning the Vec<T> into the Arc<[T]>.

Iterators of known length

When your Iterator implements TrustedLen and is of an exact size, a single allocation will be made for the Arc<[T]>. For example:

let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.Run

impl<T> Unpin for Arc<T> where
    T: ?Sized
1.33.0[src]

impl<T> Sync for Arc<T> where
    T: Send + Sync + ?Sized
[src]

impl<T> Display for Arc<T> where
    T: Display + ?Sized
[src]

impl<T> Borrow<T> for Arc<T> where
    T: ?Sized
[src]

impl<T> Ord for Arc<T> where
    T: Ord + ?Sized
[src]

fn cmp(&self, other: &Arc<T>) -> Ordering[src]

Comparison for two Arcs.

The two are compared by calling cmp() on their inner values.

Examples

use std::sync::Arc;
use std::cmp::Ordering;

let five = Arc::new(5);

assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));Run

impl<T> Pointer for Arc<T> where
    T: ?Sized
[src]

impl<T> Clone for Arc<T> where
    T: ?Sized
[src]

fn clone(&self) -> Arc<T>[src]

Makes a clone of the Arc pointer.

This creates another pointer to the same inner value, increasing the strong reference count.

Examples

use std::sync::Arc;

let five = Arc::new(5);

let _ = Arc::clone(&five);Run

impl<T> Drop for Arc<T> where
    T: ?Sized
[src]

fn drop(&mut self)[src]

Drops the Arc.

This will decrement the strong reference count. If the strong reference count reaches zero then the only other references (if any) are Weak, so we drop the inner value.

Examples

use std::sync::Arc;

struct Foo;

impl Drop for Foo {
    fn drop(&mut self) {
        println!("dropped!");
    }
}

let foo  = Arc::new(Foo);
let foo2 = Arc::clone(&foo);

drop(foo);    // Doesn't print anything
drop(foo2);   // Prints "dropped!"Run

impl<T> Send for Arc<T> where
    T: Send + Sync + ?Sized
[src]

impl<T> Debug for Arc<T> where
    T: Debug + ?Sized
[src]

impl<T, U> DispatchFromDyn<Arc<U>> for Arc<T> where
    T: Unsize<U> + ?Sized,
    U: ?Sized
[src]

impl<T> PartialOrd<Arc<T>> for Arc<T> where
    T: PartialOrd<T> + ?Sized
[src]

fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering>[src]

Partial comparison for two Arcs.

The two are compared by calling partial_cmp() on their inner values.

Examples

use std::sync::Arc;
use std::cmp::Ordering;

let five = Arc::new(5);

assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));Run

fn lt(&self, other: &Arc<T>) -> bool[src]

Less-than comparison for two Arcs.

The two are compared by calling < on their inner values.

Examples

use std::sync::Arc;

let five = Arc::new(5);

assert!(five < Arc::new(6));Run

fn le(&self, other: &Arc<T>) -> bool[src]

'Less than or equal to' comparison for two Arcs.

The two are compared by calling <= on their inner values.

Examples

use std::sync::Arc;

let five = Arc::new(5);

assert!(five <= Arc::new(5));Run

fn gt(&self, other: &Arc<T>) -> bool[src]

Greater-than comparison for two Arcs.

The two are compared by calling > on their inner values.

Examples

use std::sync::Arc;

let five = Arc::new(5);

assert!(five > Arc::new(4));Run

fn ge(&self, other: &Arc<T>) -> bool[src]

'Greater than or equal to' comparison for two Arcs.

The two are compared by calling >= on their inner values.

Examples

use std::sync::Arc;

let five = Arc::new(5);

assert!(five >= Arc::new(5));Run

impl<T> Default for Arc<T> where
    T: Default
[src]

fn default() -> Arc<T>[src]

Creates a new Arc<T>, with the Default value for T.

Examples

use std::sync::Arc;

let x: Arc<i32> = Default::default();
assert_eq!(*x, 0);Run

impl<const N: usize, T> TryFrom<Arc<[T]>> for Arc<[T; N]> where
    [T; N]: LengthAtMost32
[src]

type Error = Arc<[T]>

The type returned in the event of a conversion error.

impl<T: RefUnwindSafe + ?Sized> UnwindSafe for Arc<T>1.9.0[src]

impl From<CString> for Arc<CStr>1.24.0[src]

fn from(s: CString) -> Arc<CStr>[src]

Converts a CString into a Arc<CStr> without copying or allocating.

impl<'_> From<&'_ CStr> for Arc<CStr>1.24.0[src]

impl From<OsString> for Arc<OsStr>1.24.0[src]

fn from(s: OsString) -> Arc<OsStr>[src]

Converts a OsString into a Arc<OsStr> without copying or allocating.

impl<'_> From<&'_ OsStr> for Arc<OsStr>1.24.0[src]

impl From<PathBuf> for Arc<Path>1.24.0[src]

fn from(s: PathBuf) -> Arc<Path>[src]

Converts a Path into a Rc by copying the Path data into a new Rc buffer.

impl<'_> From<&'_ Path> for Arc<Path>1.24.0[src]

fn from(s: &Path) -> Arc<Path>[src]

Converts a Path into a Rc by copying the Path data into a new Rc buffer.

Auto Trait Implementations

impl<T: ?Sized> RefUnwindSafe for Arc<T> where
    T: RefUnwindSafe

Blanket Implementations

impl<T> From<T> for T[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T> ToString for T where
    T: Display + ?Sized
[src]