1.0.0[−][src]Struct std::collections::linked_list::LinkedList
A doubly-linked list with owned nodes.
The LinkedList
allows pushing and popping elements at either end
in constant time.
Almost always it is better to use Vec
or VecDeque
instead of
LinkedList
. In general, array-based containers are faster,
more memory efficient and make better use of CPU cache.
Methods
impl<T> LinkedList<T>
[src]
pub const fn new() -> LinkedList<T>
[src]
Creates an empty LinkedList
.
Examples
use std::collections::LinkedList; let list: LinkedList<u32> = LinkedList::new();Run
pub fn append(&mut self, other: &mut LinkedList<T>)
[src]
Moves all elements from other
to the end of the list.
This reuses all the nodes from other
and moves them into self
. After
this operation, other
becomes empty.
This operation should compute in O(1) time and O(1) memory.
Examples
use std::collections::LinkedList; let mut list1 = LinkedList::new(); list1.push_back('a'); let mut list2 = LinkedList::new(); list2.push_back('b'); list2.push_back('c'); list1.append(&mut list2); let mut iter = list1.iter(); assert_eq!(iter.next(), Some(&'a')); assert_eq!(iter.next(), Some(&'b')); assert_eq!(iter.next(), Some(&'c')); assert!(iter.next().is_none()); assert!(list2.is_empty());Run
ⓘImportant traits for Iter<'a, T>pub fn iter(&self) -> Iter<T>
[src]
Provides a forward iterator.
Examples
use std::collections::LinkedList; let mut list: LinkedList<u32> = LinkedList::new(); list.push_back(0); list.push_back(1); list.push_back(2); let mut iter = list.iter(); assert_eq!(iter.next(), Some(&0)); assert_eq!(iter.next(), Some(&1)); assert_eq!(iter.next(), Some(&2)); assert_eq!(iter.next(), None);Run
ⓘImportant traits for IterMut<'a, T>pub fn iter_mut(&mut self) -> IterMut<T>
[src]
Provides a forward iterator with mutable references.
Examples
use std::collections::LinkedList; let mut list: LinkedList<u32> = LinkedList::new(); list.push_back(0); list.push_back(1); list.push_back(2); for element in list.iter_mut() { *element += 10; } let mut iter = list.iter(); assert_eq!(iter.next(), Some(&10)); assert_eq!(iter.next(), Some(&11)); assert_eq!(iter.next(), Some(&12)); assert_eq!(iter.next(), None);Run
pub fn is_empty(&self) -> bool
[src]
Returns true
if the LinkedList
is empty.
This operation should compute in O(1) time.
Examples
use std::collections::LinkedList; let mut dl = LinkedList::new(); assert!(dl.is_empty()); dl.push_front("foo"); assert!(!dl.is_empty());Run
pub fn len(&self) -> usize
[src]
Returns the length of the LinkedList
.
This operation should compute in O(1) time.
Examples
use std::collections::LinkedList; let mut dl = LinkedList::new(); dl.push_front(2); assert_eq!(dl.len(), 1); dl.push_front(1); assert_eq!(dl.len(), 2); dl.push_back(3); assert_eq!(dl.len(), 3);Run
pub fn clear(&mut self)
[src]
Removes all elements from the LinkedList
.
This operation should compute in O(n) time.
Examples
use std::collections::LinkedList; let mut dl = LinkedList::new(); dl.push_front(2); dl.push_front(1); assert_eq!(dl.len(), 2); assert_eq!(dl.front(), Some(&1)); dl.clear(); assert_eq!(dl.len(), 0); assert_eq!(dl.front(), None);Run
pub fn contains(&self, x: &T) -> bool where
T: PartialEq<T>,
1.12.0[src]
T: PartialEq<T>,
Returns true
if the LinkedList
contains an element equal to the
given value.
Examples
use std::collections::LinkedList; let mut list: LinkedList<u32> = LinkedList::new(); list.push_back(0); list.push_back(1); list.push_back(2); assert_eq!(list.contains(&0), true); assert_eq!(list.contains(&10), false);Run
pub fn front(&self) -> Option<&T>
[src]
Provides a reference to the front element, or None
if the list is
empty.
Examples
use std::collections::LinkedList; let mut dl = LinkedList::new(); assert_eq!(dl.front(), None); dl.push_front(1); assert_eq!(dl.front(), Some(&1));Run
pub fn front_mut(&mut self) -> Option<&mut T>
[src]
Provides a mutable reference to the front element, or None
if the list
is empty.
Examples
use std::collections::LinkedList; let mut dl = LinkedList::new(); assert_eq!(dl.front(), None); dl.push_front(1); assert_eq!(dl.front(), Some(&1)); match dl.front_mut() { None => {}, Some(x) => *x = 5, } assert_eq!(dl.front(), Some(&5));Run
pub fn back(&self) -> Option<&T>
[src]
Provides a reference to the back element, or None
if the list is
empty.
Examples
use std::collections::LinkedList; let mut dl = LinkedList::new(); assert_eq!(dl.back(), None); dl.push_back(1); assert_eq!(dl.back(), Some(&1));Run
pub fn back_mut(&mut self) -> Option<&mut T>
[src]
Provides a mutable reference to the back element, or None
if the list
is empty.
Examples
use std::collections::LinkedList; let mut dl = LinkedList::new(); assert_eq!(dl.back(), None); dl.push_back(1); assert_eq!(dl.back(), Some(&1)); match dl.back_mut() { None => {}, Some(x) => *x = 5, } assert_eq!(dl.back(), Some(&5));Run
pub fn push_front(&mut self, elt: T)
[src]
Adds an element first in the list.
This operation should compute in O(1) time.
Examples
use std::collections::LinkedList; let mut dl = LinkedList::new(); dl.push_front(2); assert_eq!(dl.front().unwrap(), &2); dl.push_front(1); assert_eq!(dl.front().unwrap(), &1);Run
pub fn pop_front(&mut self) -> Option<T>
[src]
Removes the first element and returns it, or None
if the list is
empty.
This operation should compute in O(1) time.
Examples
use std::collections::LinkedList; let mut d = LinkedList::new(); assert_eq!(d.pop_front(), None); d.push_front(1); d.push_front(3); assert_eq!(d.pop_front(), Some(3)); assert_eq!(d.pop_front(), Some(1)); assert_eq!(d.pop_front(), None);Run
pub fn push_back(&mut self, elt: T)
[src]
Appends an element to the back of a list.
This operation should compute in O(1) time.
Examples
use std::collections::LinkedList; let mut d = LinkedList::new(); d.push_back(1); d.push_back(3); assert_eq!(3, *d.back().unwrap());Run
pub fn pop_back(&mut self) -> Option<T>
[src]
Removes the last element from a list and returns it, or None
if
it is empty.
This operation should compute in O(1) time.
Examples
use std::collections::LinkedList; let mut d = LinkedList::new(); assert_eq!(d.pop_back(), None); d.push_back(1); d.push_back(3); assert_eq!(d.pop_back(), Some(3));Run
pub fn split_off(&mut self, at: usize) -> LinkedList<T>
[src]
Splits the list into two at the given index. Returns everything after the given index, including the index.
This operation should compute in O(n) time.
Panics
Panics if at > len
.
Examples
use std::collections::LinkedList; let mut d = LinkedList::new(); d.push_front(1); d.push_front(2); d.push_front(3); let mut splitted = d.split_off(2); assert_eq!(splitted.pop_front(), Some(1)); assert_eq!(splitted.pop_front(), None);Run
ⓘImportant traits for DrainFilter<'_, T, F>pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<T, F> where
F: FnMut(&mut T) -> bool,
[src]
F: FnMut(&mut T) -> bool,
🔬 This is a nightly-only experimental API. (drain_filter
#43244)
recently added
Creates an iterator which uses a closure to determine if an element should be removed.
If the closure returns true, then the element is removed and yielded. If the closure returns false, the element will remain in the list and will not be yielded by the iterator.
Note that drain_filter
lets you mutate every element in the filter closure, regardless of
whether you choose to keep or remove it.
Examples
Splitting a list into evens and odds, reusing the original list:
#![feature(drain_filter)] use std::collections::LinkedList; let mut numbers: LinkedList<u32> = LinkedList::new(); numbers.extend(&[1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]); let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<LinkedList<_>>(); let odds = numbers; assert_eq!(evens.into_iter().collect::<Vec<_>>(), vec![2, 4, 6, 8, 14]); assert_eq!(odds.into_iter().collect::<Vec<_>>(), vec![1, 3, 5, 9, 11, 13, 15]);Run
Trait Implementations
impl<T> Eq for LinkedList<T> where
T: Eq,
[src]
T: Eq,
impl<'a, T> IntoIterator for &'a mut LinkedList<T>
[src]
type Item = &'a mut T
The type of the elements being iterated over.
type IntoIter = IterMut<'a, T>
Which kind of iterator are we turning this into?
ⓘImportant traits for IterMut<'a, T>fn into_iter(self) -> IterMut<'a, T>
[src]
impl<'a, T> IntoIterator for &'a LinkedList<T>
[src]
type Item = &'a T
The type of the elements being iterated over.
type IntoIter = Iter<'a, T>
Which kind of iterator are we turning this into?
ⓘImportant traits for Iter<'a, T>fn into_iter(self) -> Iter<'a, T>
[src]
impl<T> IntoIterator for LinkedList<T>
[src]
type Item = T
The type of the elements being iterated over.
type IntoIter = IntoIter<T>
Which kind of iterator are we turning this into?
ⓘImportant traits for IntoIter<T>fn into_iter(self) -> IntoIter<T>
[src]
Consumes the list into an iterator yielding elements by value.
impl<T> Hash for LinkedList<T> where
T: Hash,
[src]
T: Hash,
fn hash<H>(&self, state: &mut H) where
H: Hasher,
[src]
H: Hasher,
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
impl<T> PartialEq<LinkedList<T>> for LinkedList<T> where
T: PartialEq<T>,
[src]
T: PartialEq<T>,
fn eq(&self, other: &LinkedList<T>) -> bool
[src]
fn ne(&self, other: &LinkedList<T>) -> bool
[src]
impl<T> FromIterator<T> for LinkedList<T>
[src]
fn from_iter<I>(iter: I) -> LinkedList<T> where
I: IntoIterator<Item = T>,
[src]
I: IntoIterator<Item = T>,
impl<T> Sync for LinkedList<T> where
T: Sync,
[src]
T: Sync,
impl<T> Ord for LinkedList<T> where
T: Ord,
[src]
T: Ord,
fn cmp(&self, other: &LinkedList<T>) -> Ordering
[src]
fn max(self, other: Self) -> Self
1.21.0[src]
fn min(self, other: Self) -> Self
1.21.0[src]
fn clamp(self, min: Self, max: Self) -> Self
[src]
impl<T> Clone for LinkedList<T> where
T: Clone,
[src]
T: Clone,
fn clone(&self) -> LinkedList<T>
[src]
fn clone_from(&mut self, source: &Self)
[src]
impl<T> Drop for LinkedList<T>
[src]
impl<T> Send for LinkedList<T> where
T: Send,
[src]
T: Send,
impl<T> Debug for LinkedList<T> where
T: Debug,
[src]
T: Debug,
impl<T> PartialOrd<LinkedList<T>> for LinkedList<T> where
T: PartialOrd<T>,
[src]
T: PartialOrd<T>,
fn partial_cmp(&self, other: &LinkedList<T>) -> Option<Ordering>
[src]
#[must_use]
fn lt(&self, other: &Rhs) -> bool
[src]
#[must_use]
fn le(&self, other: &Rhs) -> bool
[src]
#[must_use]
fn gt(&self, other: &Rhs) -> bool
[src]
#[must_use]
fn ge(&self, other: &Rhs) -> bool
[src]
impl<T> Default for LinkedList<T>
[src]
fn default() -> LinkedList<T>
[src]
Creates an empty LinkedList<T>
.
impl<'a, T> Extend<&'a T> for LinkedList<T> where
T: 'a + Copy,
1.2.0[src]
T: 'a + Copy,
fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = &'a T>,
[src]
I: IntoIterator<Item = &'a T>,
impl<T> Extend<T> for LinkedList<T>
[src]
fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = T>,
[src]
I: IntoIterator<Item = T>,
Auto Trait Implementations
impl<T> UnwindSafe for LinkedList<T> where
T: RefUnwindSafe + UnwindSafe,
T: RefUnwindSafe + UnwindSafe,
impl<T> RefUnwindSafe for LinkedList<T> where
T: RefUnwindSafe,
T: RefUnwindSafe,
impl<T> Unpin for LinkedList<T>
Blanket Implementations
impl<T> From<T> for T
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<I> IntoIterator for I where
I: Iterator,
[src]
I: Iterator,
type Item = <I as Iterator>::Item
The type of the elements being iterated over.
type IntoIter = I
Which kind of iterator are we turning this into?
fn into_iter(self) -> I
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
ⓘImportant traits for &'_ mut Ffn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,