1.0.0[−][src]Struct alloc::rc::Rc
A single-threaded reference-counting pointer. 'Rc' stands for 'Reference Counted'.
See the module-level documentation for more details.
The inherent methods of Rc
are all associated functions, which means
that you have to call them as e.g., Rc::get_mut(&mut value)
instead of
value.get_mut()
. This avoids conflicts with methods of the inner
type T
.
Methods
impl<T> Rc<T>
[src]
pub fn new(value: T) -> Rc<T>
[src]
pub fn new_uninit() -> Rc<MaybeUninit<T>>
[src]
Constructs a new Rc
with uninitialized contents.
Examples
#![feature(new_uninit)] #![feature(get_mut_unchecked)] use std::rc::Rc; let mut five = Rc::<u32>::new_uninit(); let five = unsafe { // Deferred initialization: Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5); five.assume_init() }; assert_eq!(*five, 5)
pub fn pin(value: T) -> Pin<Rc<T>>
1.33.0[src]
Constructs a new Pin<Rc<T>>
. If T
does not implement Unpin
, then
value
will be pinned in memory and unable to be moved.
pub fn try_unwrap(this: Self) -> Result<T, Self>
1.4.0[src]
Returns the contained value, if the Rc
has exactly one strong reference.
Otherwise, an Err
is returned with the same Rc
that was
passed in.
This will succeed even if there are outstanding weak references.
Examples
use std::rc::Rc; let x = Rc::new(3); assert_eq!(Rc::try_unwrap(x), Ok(3)); let x = Rc::new(4); let _y = Rc::clone(&x); assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
impl<T> Rc<[T]>
[src]
pub fn new_uninit_slice(len: usize) -> Rc<[MaybeUninit<T>]>
[src]
Constructs a new reference-counted slice with uninitialized contents.
Examples
#![feature(new_uninit)] #![feature(get_mut_unchecked)] use std::rc::Rc; let mut values = Rc::<[u32]>::new_uninit_slice(3); let values = unsafe { // Deferred initialization: Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1); Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2); Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3); values.assume_init() }; assert_eq!(*values, [1, 2, 3])
impl<T> Rc<MaybeUninit<T>>
[src]
pub unsafe fn assume_init(self) -> Rc<T>
[src]
Converts to Rc<T>
.
Safety
As with MaybeUninit::assume_init
,
it is up to the caller to guarantee that the value
really is in an initialized state.
Calling this when the content is not yet fully initialized
causes immediate undefined behavior.
Examples
#![feature(new_uninit)] #![feature(get_mut_unchecked)] use std::rc::Rc; let mut five = Rc::<u32>::new_uninit(); let five = unsafe { // Deferred initialization: Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5); five.assume_init() }; assert_eq!(*five, 5)
impl<T> Rc<[MaybeUninit<T>]>
[src]
pub unsafe fn assume_init(self) -> Rc<[T]>
[src]
Converts to Rc<[T]>
.
Safety
As with MaybeUninit::assume_init
,
it is up to the caller to guarantee that the value
really is in an initialized state.
Calling this when the content is not yet fully initialized
causes immediate undefined behavior.
Examples
#![feature(new_uninit)] #![feature(get_mut_unchecked)] use std::rc::Rc; let mut values = Rc::<[u32]>::new_uninit_slice(3); let values = unsafe { // Deferred initialization: Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1); Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2); Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3); values.assume_init() }; assert_eq!(*values, [1, 2, 3])
impl<T: ?Sized> Rc<T>
[src]
pub fn into_raw(this: Self) -> *const T
1.17.0[src]
Consumes the Rc
, returning the wrapped pointer.
To avoid a memory leak the pointer must be converted back to an Rc
using
Rc::from_raw
.
Examples
use std::rc::Rc; let x = Rc::new("hello".to_owned()); let x_ptr = Rc::into_raw(x); assert_eq!(unsafe { &*x_ptr }, "hello");
pub unsafe fn from_raw(ptr: *const T) -> Self
1.17.0[src]
Constructs an Rc
from a raw pointer.
The raw pointer must have been previously returned by a call to a
Rc::into_raw
.
This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.
Examples
use std::rc::Rc; let x = Rc::new("hello".to_owned()); let x_ptr = Rc::into_raw(x); unsafe { // Convert back to an `Rc` to prevent leak. let x = Rc::from_raw(x_ptr); assert_eq!(&*x, "hello"); // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe. } // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
pub fn into_raw_non_null(this: Self) -> NonNull<T>
[src]
Consumes the Rc
, returning the wrapped pointer as NonNull<T>
.
Examples
#![feature(rc_into_raw_non_null)] use std::rc::Rc; let x = Rc::new("hello".to_owned()); let ptr = Rc::into_raw_non_null(x); let deref = unsafe { ptr.as_ref() }; assert_eq!(deref, "hello");
pub fn downgrade(this: &Self) -> Weak<T>
1.4.0[src]
Creates a new Weak
pointer to this value.
Examples
use std::rc::Rc; let five = Rc::new(5); let weak_five = Rc::downgrade(&five);
pub fn weak_count(this: &Self) -> usize
1.15.0[src]
Gets the number of Weak
pointers to this value.
Examples
use std::rc::Rc; let five = Rc::new(5); let _weak_five = Rc::downgrade(&five); assert_eq!(1, Rc::weak_count(&five));
pub fn strong_count(this: &Self) -> usize
1.15.0[src]
Gets the number of strong (Rc
) pointers to this value.
Examples
use std::rc::Rc; let five = Rc::new(5); let _also_five = Rc::clone(&five); assert_eq!(2, Rc::strong_count(&five));
pub fn get_mut(this: &mut Self) -> Option<&mut T>
1.4.0[src]
Returns a mutable reference to the inner value, if there are
no other Rc
or Weak
pointers to the same value.
Returns None
otherwise, because it is not safe to
mutate a shared value.
See also make_mut
, which will clone
the inner value when it's shared.
Examples
use std::rc::Rc; let mut x = Rc::new(3); *Rc::get_mut(&mut x).unwrap() = 4; assert_eq!(*x, 4); let _y = Rc::clone(&x); assert!(Rc::get_mut(&mut x).is_none());
pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T
[src]
Returns a mutable reference to the inner value, without any check.
See also get_mut
, which is safe and does appropriate checks.
Safety
Any other Rc
or Weak
pointers to the same value must not be dereferenced
for the duration of the returned borrow.
This is trivially the case if no such pointers exist,
for example immediately after Rc::new
.
Examples
#![feature(get_mut_unchecked)] use std::rc::Rc; let mut x = Rc::new(String::new()); unsafe { Rc::get_mut_unchecked(&mut x).push_str("foo") } assert_eq!(*x, "foo");
pub fn ptr_eq(this: &Self, other: &Self) -> bool
1.17.0[src]
Returns true
if the two Rc
s point to the same value (not
just values that compare as equal).
Examples
use std::rc::Rc; let five = Rc::new(5); let same_five = Rc::clone(&five); let other_five = Rc::new(5); assert!(Rc::ptr_eq(&five, &same_five)); assert!(!Rc::ptr_eq(&five, &other_five));
impl<T: Clone> Rc<T>
[src]
pub fn make_mut(this: &mut Self) -> &mut T
1.4.0[src]
Makes a mutable reference into the given Rc
.
If there are other Rc
pointers to the same value, then make_mut
will
clone
the inner value to ensure unique ownership. This is also
referred to as clone-on-write.
If there are no other Rc
pointers to this value, then Weak
pointers to this value will be dissassociated.
See also get_mut
, which will fail rather than cloning.
Examples
use std::rc::Rc; let mut data = Rc::new(5); *Rc::make_mut(&mut data) += 1; // Won't clone anything let mut other_data = Rc::clone(&data); // Won't clone inner data *Rc::make_mut(&mut data) += 1; // Clones inner data *Rc::make_mut(&mut data) += 1; // Won't clone anything *Rc::make_mut(&mut other_data) *= 2; // Won't clone anything // Now `data` and `other_data` point to different values. assert_eq!(*data, 8); assert_eq!(*other_data, 12);
Weak
pointers will be dissassociated:
use std::rc::Rc; let mut data = Rc::new(75); let weak = Rc::downgrade(&data); assert!(75 == *data); assert!(75 == *weak.upgrade().unwrap()); *Rc::make_mut(&mut data) += 1; assert!(76 == *data); assert!(weak.upgrade().is_none());
impl Rc<dyn Any>
[src]
pub fn downcast<T: Any>(self) -> Result<Rc<T>, Rc<dyn Any>>
1.29.0[src]
Attempt to downcast the Rc<dyn Any>
to a concrete type.
Examples
use std::any::Any; use std::rc::Rc; fn print_if_string(value: Rc<dyn Any>) { if let Ok(string) = value.downcast::<String>() { println!("String ({}): {}", string.len(), string); } } fn main() { let my_string = "Hello World".to_string(); print_if_string(Rc::new(my_string)); print_if_string(Rc::new(0i8)); }
Trait Implementations
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T>
[src]
impl<T> From<T> for Rc<T>
1.6.0[src]
impl<'_, T: Clone> From<&'_ [T]> for Rc<[T]>
1.21.0[src]
impl<'_> From<&'_ str> for Rc<str>
1.21.0[src]
impl From<String> for Rc<str>
1.21.0[src]
impl<T: ?Sized> From<Box<T>> for Rc<T>
1.21.0[src]
impl<T> From<Vec<T>> for Rc<[T]>
1.21.0[src]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Rc<U>> for Rc<T>
[src]
impl<T: ?Sized + PartialEq> PartialEq<Rc<T>> for Rc<T>
[src]
fn eq(&self, other: &Rc<T>) -> bool
[src]
Equality for two Rc
s.
Two Rc
s are equal if their inner values are equal.
If T
also implements Eq
, two Rc
s that point to the same value are
always equal.
Examples
use std::rc::Rc; let five = Rc::new(5); assert!(five == Rc::new(5));
fn ne(&self, other: &Rc<T>) -> bool
[src]
Inequality for two Rc
s.
Two Rc
s are unequal if their inner values are unequal.
If T
also implements Eq
, two Rc
s that point to the same value are
never unequal.
Examples
use std::rc::Rc; let five = Rc::new(5); assert!(five != Rc::new(6));
impl<T: ?Sized + Eq> Eq for Rc<T>
[src]
impl<T: ?Sized + Ord> Ord for Rc<T>
[src]
fn cmp(&self, other: &Rc<T>) -> Ordering
[src]
Comparison for two Rc
s.
The two are compared by calling cmp()
on their inner values.
Examples
use std::rc::Rc; use std::cmp::Ordering; let five = Rc::new(5); assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
fn max(self, other: Self) -> Self
1.21.0[src]
fn min(self, other: Self) -> Self
1.21.0[src]
fn clamp(self, min: Self, max: Self) -> Self
[src]
impl<T: ?Sized + PartialOrd> PartialOrd<Rc<T>> for Rc<T>
[src]
fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering>
[src]
Partial comparison for two Rc
s.
The two are compared by calling partial_cmp()
on their inner values.
Examples
use std::rc::Rc; use std::cmp::Ordering; let five = Rc::new(5); assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
fn lt(&self, other: &Rc<T>) -> bool
[src]
Less-than comparison for two Rc
s.
The two are compared by calling <
on their inner values.
Examples
use std::rc::Rc; let five = Rc::new(5); assert!(five < Rc::new(6));
fn le(&self, other: &Rc<T>) -> bool
[src]
'Less than or equal to' comparison for two Rc
s.
The two are compared by calling <=
on their inner values.
Examples
use std::rc::Rc; let five = Rc::new(5); assert!(five <= Rc::new(5));
fn gt(&self, other: &Rc<T>) -> bool
[src]
Greater-than comparison for two Rc
s.
The two are compared by calling >
on their inner values.
Examples
use std::rc::Rc; let five = Rc::new(5); assert!(five > Rc::new(4));
fn ge(&self, other: &Rc<T>) -> bool
[src]
'Greater than or equal to' comparison for two Rc
s.
The two are compared by calling >=
on their inner values.
Examples
use std::rc::Rc; let five = Rc::new(5); assert!(five >= Rc::new(5));
impl<T: ?Sized + Hash> Hash for Rc<T>
[src]
fn hash<H: Hasher>(&self, state: &mut H)
[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
impl<T: ?Sized> Deref for Rc<T>
[src]
impl<T: ?Sized> Receiver for Rc<T>
[src]
impl<T: ?Sized> Drop for Rc<T>
[src]
fn drop(&mut self)
[src]
Drops the Rc
.
This will decrement the strong reference count. If the strong reference
count reaches zero then the only other references (if any) are
Weak
, so we drop
the inner value.
Examples
use std::rc::Rc; struct Foo; impl Drop for Foo { fn drop(&mut self) { println!("dropped!"); } } let foo = Rc::new(Foo); let foo2 = Rc::clone(&foo); drop(foo); // Doesn't print anything drop(foo2); // Prints "dropped!"
impl<T: ?Sized> Unpin for Rc<T>
1.33.0[src]
impl<T: ?Sized + Debug> Debug for Rc<T>
[src]
impl<T: ?Sized + Display> Display for Rc<T>
[src]
impl<T, const N: usize> TryFrom<Rc<[T]>> for Rc<[T; N]> where
[T; N]: LengthAtMost32,
[src]
[T; N]: LengthAtMost32,
type Error = Rc<[T]>
The type returned in the event of a conversion error.
fn try_from(boxed_slice: Rc<[T]>) -> Result<Self, Self::Error>
[src]
impl<T: ?Sized> AsRef<T> for Rc<T>
1.5.0[src]
impl<T> FromIterator<T> for Rc<[T]>
1.37.0[src]
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self
[src]
Takes each element in the Iterator
and collects it into an Rc<[T]>
.
Performance characteristics
The general case
In the general case, collecting into Rc<[T]>
is done by first
collecting into a Vec<T>
. That is, when writing the following:
let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
this behaves as if we wrote:
let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0) .collect::<Vec<_>>() // The first set of allocations happens here. .into(); // A second allocation for `Rc<[T]>` happens here.
This will allocate as many times as needed for constructing the Vec<T>
and then it will allocate once for turning the Vec<T>
into the Rc<[T]>
.
Iterators of known length
When your Iterator
implements TrustedLen
and is of an exact size,
a single allocation will be made for the Rc<[T]>
. For example:
let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
impl<T: ?Sized> Pointer for Rc<T>
[src]
impl<T: ?Sized> !Send for Rc<T>
[src]
impl<T: ?Sized> !Sync for Rc<T>
[src]
impl<T: ?Sized> Clone for Rc<T>
[src]
fn clone(&self) -> Rc<T>
[src]
Makes a clone of the Rc
pointer.
This creates another pointer to the same inner value, increasing the strong reference count.
Examples
use std::rc::Rc; let five = Rc::new(5); let _ = Rc::clone(&five);
fn clone_from(&mut self, source: &Self)
[src]
impl<T: Default> Default for Rc<T>
[src]
fn default() -> Rc<T>
[src]
Creates a new Rc<T>
, with the Default
value for T
.
Examples
use std::rc::Rc; let x: Rc<i32> = Default::default(); assert_eq!(*x, 0);
impl<T: ?Sized> Borrow<T> for Rc<T>
[src]
Blanket Implementations
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&Self) -> T
[src]
fn clone_into(&Self, &mut T)
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
T: Display + ?Sized,
impl<T> From<T> for T
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,