1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
//! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
//! Counted'.
//!
//! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
//! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
//! pointer to the same value in the heap. When the last [`Rc`] pointer to a
//! given value is destroyed, the pointed-to value is also destroyed.
//!
//! Shared references in Rust disallow mutation by default, and [`Rc`]
//! is no exception: you cannot generally obtain a mutable reference to
//! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
//! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
//! inside an Rc][mutability].
//!
//! [`Rc`] uses non-atomic reference counting. This means that overhead is very
//! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
//! does not implement [`Send`][send]. As a result, the Rust compiler
//! will check *at compile time* that you are not sending [`Rc`]s between
//! threads. If you need multi-threaded, atomic reference counting, use
//! [`sync::Arc`][arc].
//!
//! The [`downgrade`][downgrade] method can be used to create a non-owning
//! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
//! to an [`Rc`], but this will return [`None`] if the value has
//! already been dropped.
//!
//! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
//! [`Weak`] is used to break cycles. For example, a tree could have strong
//! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
//! children back to their parents.
//!
//! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
//! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
//! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated
//! functions, called using function-like syntax:
//!
//! ```
//! use std::rc::Rc;
//! let my_rc = Rc::new(());
//!
//! Rc::downgrade(&my_rc);
//! ```
//!
//! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the value may have
//! already been destroyed.
//!
//! # Cloning references
//!
//! Creating a new reference from an existing reference counted pointer is done using the
//! `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
//!
//! ```
//! use std::rc::Rc;
//! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
//! // The two syntaxes below are equivalent.
//! let a = foo.clone();
//! let b = Rc::clone(&foo);
//! // a and b both point to the same memory location as foo.
//! ```
//!
//! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
//! the meaning of the code. In the example above, this syntax makes it easier to see that
//! this code is creating a new reference rather than copying the whole content of foo.
//!
//! # Examples
//!
//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
//! unique ownership, because more than one gadget may belong to the same
//! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
//!
//! ```
//! use std::rc::Rc;
//!
//! struct Owner {
//!     name: String,
//!     // ...other fields
//! }
//!
//! struct Gadget {
//!     id: i32,
//!     owner: Rc<Owner>,
//!     // ...other fields
//! }
//!
//! fn main() {
//!     // Create a reference-counted `Owner`.
//!     let gadget_owner: Rc<Owner> = Rc::new(
//!         Owner {
//!             name: "Gadget Man".to_string(),
//!         }
//!     );
//!
//!     // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
//!     // value gives us a new pointer to the same `Owner` value, incrementing
//!     // the reference count in the process.
//!     let gadget1 = Gadget {
//!         id: 1,
//!         owner: Rc::clone(&gadget_owner),
//!     };
//!     let gadget2 = Gadget {
//!         id: 2,
//!         owner: Rc::clone(&gadget_owner),
//!     };
//!
//!     // Dispose of our local variable `gadget_owner`.
//!     drop(gadget_owner);
//!
//!     // Despite dropping `gadget_owner`, we're still able to print out the name
//!     // of the `Owner` of the `Gadget`s. This is because we've only dropped a
//!     // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
//!     // other `Rc<Owner>` values pointing at the same `Owner`, it will remain
//!     // allocated. The field projection `gadget1.owner.name` works because
//!     // `Rc<Owner>` automatically dereferences to `Owner`.
//!     println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
//!     println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
//!
//!     // At the end of the function, `gadget1` and `gadget2` are destroyed, and
//!     // with them the last counted references to our `Owner`. Gadget Man now
//!     // gets destroyed as well.
//! }
//! ```
//!
//! If our requirements change, and we also need to be able to traverse from
//! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
//! to `Gadget` introduces a cycle between the values. This means that their
//! reference counts can never reach 0, and the values will remain allocated
//! forever: a memory leak. In order to get around this, we can use [`Weak`]
//! pointers.
//!
//! Rust actually makes it somewhat difficult to produce this loop in the first
//! place. In order to end up with two values that point at each other, one of
//! them needs to be mutable. This is difficult because [`Rc`] enforces
//! memory safety by only giving out shared references to the value it wraps,
//! and these don't allow direct mutation. We need to wrap the part of the
//! value we wish to mutate in a [`RefCell`], which provides *interior
//! mutability*: a method to achieve mutability through a shared reference.
//! [`RefCell`] enforces Rust's borrowing rules at runtime.
//!
//! ```
//! use std::rc::Rc;
//! use std::rc::Weak;
//! use std::cell::RefCell;
//!
//! struct Owner {
//!     name: String,
//!     gadgets: RefCell<Vec<Weak<Gadget>>>,
//!     // ...other fields
//! }
//!
//! struct Gadget {
//!     id: i32,
//!     owner: Rc<Owner>,
//!     // ...other fields
//! }
//!
//! fn main() {
//!     // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
//!     // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
//!     // a shared reference.
//!     let gadget_owner: Rc<Owner> = Rc::new(
//!         Owner {
//!             name: "Gadget Man".to_string(),
//!             gadgets: RefCell::new(vec![]),
//!         }
//!     );
//!
//!     // Create `Gadget`s belonging to `gadget_owner`, as before.
//!     let gadget1 = Rc::new(
//!         Gadget {
//!             id: 1,
//!             owner: Rc::clone(&gadget_owner),
//!         }
//!     );
//!     let gadget2 = Rc::new(
//!         Gadget {
//!             id: 2,
//!             owner: Rc::clone(&gadget_owner),
//!         }
//!     );
//!
//!     // Add the `Gadget`s to their `Owner`.
//!     {
//!         let mut gadgets = gadget_owner.gadgets.borrow_mut();
//!         gadgets.push(Rc::downgrade(&gadget1));
//!         gadgets.push(Rc::downgrade(&gadget2));
//!
//!         // `RefCell` dynamic borrow ends here.
//!     }
//!
//!     // Iterate over our `Gadget`s, printing their details out.
//!     for gadget_weak in gadget_owner.gadgets.borrow().iter() {
//!
//!         // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
//!         // guarantee the value is still allocated, we need to call
//!         // `upgrade`, which returns an `Option<Rc<Gadget>>`.
//!         //
//!         // In this case we know the value still exists, so we simply
//!         // `unwrap` the `Option`. In a more complicated program, you might
//!         // need graceful error handling for a `None` result.
//!
//!         let gadget = gadget_weak.upgrade().unwrap();
//!         println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
//!     }
//!
//!     // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
//!     // are destroyed. There are now no strong (`Rc`) pointers to the
//!     // gadgets, so they are destroyed. This zeroes the reference count on
//!     // Gadget Man, so he gets destroyed as well.
//! }
//! ```
//!
//! [`Rc`]: struct.Rc.html
//! [`Weak`]: struct.Weak.html
//! [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
//! [`Cell`]: ../../std/cell/struct.Cell.html
//! [`RefCell`]: ../../std/cell/struct.RefCell.html
//! [send]: ../../std/marker/trait.Send.html
//! [arc]: ../../std/sync/struct.Arc.html
//! [`Deref`]: ../../std/ops/trait.Deref.html
//! [downgrade]: struct.Rc.html#method.downgrade
//! [upgrade]: struct.Weak.html#method.upgrade
//! [`None`]: ../../std/option/enum.Option.html#variant.None
//! [mutability]: ../../std/cell/index.html#introducing-mutability-inside-of-something-immutable

#![stable(feature = "rust1", since = "1.0.0")]

#[cfg(not(test))]
use crate::boxed::Box;
#[cfg(test)]
use std::boxed::Box;

use core::any::Any;
use core::array::LengthAtMost32;
use core::borrow;
use core::cell::Cell;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::intrinsics::abort;
use core::iter;
use core::marker::{self, Unpin, Unsize, PhantomData};
use core::mem::{self, align_of, align_of_val, forget, size_of_val};
use core::ops::{Deref, Receiver, CoerceUnsized, DispatchFromDyn};
use core::pin::Pin;
use core::ptr::{self, NonNull};
use core::slice::{self, from_raw_parts_mut};
use core::convert::{From, TryFrom};
use core::usize;

use crate::alloc::{Global, Alloc, Layout, box_free, handle_alloc_error};
use crate::string::String;
use crate::vec::Vec;

#[cfg(test)]
mod tests;

struct RcBox<T: ?Sized> {
    strong: Cell<usize>,
    weak: Cell<usize>,
    value: T,
}

/// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
/// Counted'.
///
/// See the [module-level documentation](./index.html) for more details.
///
/// The inherent methods of `Rc` are all associated functions, which means
/// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of
/// `value.get_mut()`. This avoids conflicts with methods of the inner
/// type `T`.
///
/// [get_mut]: #method.get_mut
#[cfg_attr(not(test), lang = "rc")]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Rc<T: ?Sized> {
    ptr: NonNull<RcBox<T>>,
    phantom: PhantomData<T>,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !marker::Send for Rc<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !marker::Sync for Rc<T> {}

#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Rc<U>> for Rc<T> {}

#[unstable(feature = "dispatch_from_dyn", issue = "0")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {}

impl<T: ?Sized> Rc<T> {
    fn from_inner(ptr: NonNull<RcBox<T>>) -> Self {
        Self {
            ptr,
            phantom: PhantomData,
        }
    }

    unsafe fn from_ptr(ptr: *mut RcBox<T>) -> Self {
        Self::from_inner(NonNull::new_unchecked(ptr))
    }
}

impl<T> Rc<T> {
    /// Constructs a new `Rc<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn new(value: T) -> Rc<T> {
        // There is an implicit weak pointer owned by all the strong
        // pointers, which ensures that the weak destructor never frees
        // the allocation while the strong destructor is running, even
        // if the weak pointer is stored inside the strong one.
        Self::from_inner(Box::into_raw_non_null(box RcBox {
            strong: Cell::new(1),
            weak: Cell::new(1),
            value,
        }))
    }

    /// Constructs a new `Rc` with uninitialized contents.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    ///
    /// let mut five = Rc::<u32>::new_uninit();
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[unstable(feature = "new_uninit", issue = "63291")]
    pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> {
        unsafe {
            Rc::from_ptr(Rc::allocate_for_layout(
                Layout::new::<T>(),
                |mem| mem as *mut RcBox<mem::MaybeUninit<T>>,
            ))
        }
    }

    /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then
    /// `value` will be pinned in memory and unable to be moved.
    #[stable(feature = "pin", since = "1.33.0")]
    pub fn pin(value: T) -> Pin<Rc<T>> {
        unsafe { Pin::new_unchecked(Rc::new(value)) }
    }

    /// Returns the contained value, if the `Rc` has exactly one strong reference.
    ///
    /// Otherwise, an [`Err`][result] is returned with the same `Rc` that was
    /// passed in.
    ///
    /// This will succeed even if there are outstanding weak references.
    ///
    /// [result]: ../../std/result/enum.Result.html
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let x = Rc::new(3);
    /// assert_eq!(Rc::try_unwrap(x), Ok(3));
    ///
    /// let x = Rc::new(4);
    /// let _y = Rc::clone(&x);
    /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
    /// ```
    #[inline]
    #[stable(feature = "rc_unique", since = "1.4.0")]
    pub fn try_unwrap(this: Self) -> Result<T, Self> {
        if Rc::strong_count(&this) == 1 {
            unsafe {
                let val = ptr::read(&*this); // copy the contained object

                // Indicate to Weaks that they can't be promoted by decrementing
                // the strong count, and then remove the implicit "strong weak"
                // pointer while also handling drop logic by just crafting a
                // fake Weak.
                this.dec_strong();
                let _weak = Weak { ptr: this.ptr };
                forget(this);
                Ok(val)
            }
        } else {
            Err(this)
        }
    }
}

impl<T> Rc<[T]> {
    /// Constructs a new reference-counted slice with uninitialized contents.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    ///
    /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
    ///     Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
    ///     Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    #[unstable(feature = "new_uninit", issue = "63291")]
    pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
        unsafe {
            Rc::from_ptr(Rc::allocate_for_slice(len))
        }
    }
}

impl<T> Rc<mem::MaybeUninit<T>> {
    /// Converts to `Rc<T>`.
    ///
    /// # Safety
    ///
    /// As with [`MaybeUninit::assume_init`],
    /// it is up to the caller to guarantee that the value
    /// really is in an initialized state.
    /// Calling this when the content is not yet fully initialized
    /// causes immediate undefined behavior.
    ///
    /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    ///
    /// let mut five = Rc::<u32>::new_uninit();
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub unsafe fn assume_init(self) -> Rc<T> {
        Rc::from_inner(mem::ManuallyDrop::new(self).ptr.cast())
    }
}

impl<T> Rc<[mem::MaybeUninit<T>]> {
    /// Converts to `Rc<[T]>`.
    ///
    /// # Safety
    ///
    /// As with [`MaybeUninit::assume_init`],
    /// it is up to the caller to guarantee that the value
    /// really is in an initialized state.
    /// Calling this when the content is not yet fully initialized
    /// causes immediate undefined behavior.
    ///
    /// [`MaybeUninit::assume_init`]: ../../std/mem/union.MaybeUninit.html#method.assume_init
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_uninit)]
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    ///
    /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
    ///     Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
    ///     Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub unsafe fn assume_init(self) -> Rc<[T]> {
        Rc::from_ptr(mem::ManuallyDrop::new(self).ptr.as_ptr() as _)
    }
}

impl<T: ?Sized> Rc<T> {
    /// Consumes the `Rc`, returning the wrapped pointer.
    ///
    /// To avoid a memory leak the pointer must be converted back to an `Rc` using
    /// [`Rc::from_raw`][from_raw].
    ///
    /// [from_raw]: struct.Rc.html#method.from_raw
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let x = Rc::new("hello".to_owned());
    /// let x_ptr = Rc::into_raw(x);
    /// assert_eq!(unsafe { &*x_ptr }, "hello");
    /// ```
    #[stable(feature = "rc_raw", since = "1.17.0")]
    pub fn into_raw(this: Self) -> *const T {
        let ptr: *const T = &*this;
        mem::forget(this);
        ptr
    }

    /// Constructs an `Rc` from a raw pointer.
    ///
    /// The raw pointer must have been previously returned by a call to a
    /// [`Rc::into_raw`][into_raw].
    ///
    /// This function is unsafe because improper use may lead to memory problems. For example, a
    /// double-free may occur if the function is called twice on the same raw pointer.
    ///
    /// [into_raw]: struct.Rc.html#method.into_raw
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let x = Rc::new("hello".to_owned());
    /// let x_ptr = Rc::into_raw(x);
    ///
    /// unsafe {
    ///     // Convert back to an `Rc` to prevent leak.
    ///     let x = Rc::from_raw(x_ptr);
    ///     assert_eq!(&*x, "hello");
    ///
    ///     // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
    /// }
    ///
    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
    /// ```
    #[stable(feature = "rc_raw", since = "1.17.0")]
    pub unsafe fn from_raw(ptr: *const T) -> Self {
        let offset = data_offset(ptr);

        // Reverse the offset to find the original RcBox.
        let fake_ptr = ptr as *mut RcBox<T>;
        let rc_ptr = set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset));

        Self::from_ptr(rc_ptr)
    }

    /// Consumes the `Rc`, returning the wrapped pointer as `NonNull<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(rc_into_raw_non_null)]
    ///
    /// use std::rc::Rc;
    ///
    /// let x = Rc::new("hello".to_owned());
    /// let ptr = Rc::into_raw_non_null(x);
    /// let deref = unsafe { ptr.as_ref() };
    /// assert_eq!(deref, "hello");
    /// ```
    #[unstable(feature = "rc_into_raw_non_null", issue = "47336")]
    #[inline]
    pub fn into_raw_non_null(this: Self) -> NonNull<T> {
        // safe because Rc guarantees its pointer is non-null
        unsafe { NonNull::new_unchecked(Rc::into_raw(this) as *mut _) }
    }

    /// Creates a new [`Weak`][weak] pointer to this value.
    ///
    /// [weak]: struct.Weak.html
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// let weak_five = Rc::downgrade(&five);
    /// ```
    #[stable(feature = "rc_weak", since = "1.4.0")]
    pub fn downgrade(this: &Self) -> Weak<T> {
        this.inc_weak();
        // Make sure we do not create a dangling Weak
        debug_assert!(!is_dangling(this.ptr));
        Weak { ptr: this.ptr }
    }

    /// Gets the number of [`Weak`][weak] pointers to this value.
    ///
    /// [weak]: struct.Weak.html
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    /// let _weak_five = Rc::downgrade(&five);
    ///
    /// assert_eq!(1, Rc::weak_count(&five));
    /// ```
    #[inline]
    #[stable(feature = "rc_counts", since = "1.15.0")]
    pub fn weak_count(this: &Self) -> usize {
        this.weak() - 1
    }

    /// Gets the number of strong (`Rc`) pointers to this value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    /// let _also_five = Rc::clone(&five);
    ///
    /// assert_eq!(2, Rc::strong_count(&five));
    /// ```
    #[inline]
    #[stable(feature = "rc_counts", since = "1.15.0")]
    pub fn strong_count(this: &Self) -> usize {
        this.strong()
    }

    /// Returns `true` if there are no other `Rc` or [`Weak`][weak] pointers to
    /// this inner value.
    ///
    /// [weak]: struct.Weak.html
    #[inline]
    fn is_unique(this: &Self) -> bool {
        Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
    }

    /// Returns a mutable reference to the inner value, if there are
    /// no other `Rc` or [`Weak`][weak] pointers to the same value.
    ///
    /// Returns [`None`] otherwise, because it is not safe to
    /// mutate a shared value.
    ///
    /// See also [`make_mut`][make_mut], which will [`clone`][clone]
    /// the inner value when it's shared.
    ///
    /// [weak]: struct.Weak.html
    /// [`None`]: ../../std/option/enum.Option.html#variant.None
    /// [make_mut]: struct.Rc.html#method.make_mut
    /// [clone]: ../../std/clone/trait.Clone.html#tymethod.clone
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let mut x = Rc::new(3);
    /// *Rc::get_mut(&mut x).unwrap() = 4;
    /// assert_eq!(*x, 4);
    ///
    /// let _y = Rc::clone(&x);
    /// assert!(Rc::get_mut(&mut x).is_none());
    /// ```
    #[inline]
    #[stable(feature = "rc_unique", since = "1.4.0")]
    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
        if Rc::is_unique(this) {
            unsafe {
                Some(Rc::get_mut_unchecked(this))
            }
        } else {
            None
        }
    }

    /// Returns a mutable reference to the inner value,
    /// without any check.
    ///
    /// See also [`get_mut`], which is safe and does appropriate checks.
    ///
    /// [`get_mut`]: struct.Rc.html#method.get_mut
    ///
    /// # Safety
    ///
    /// Any other `Rc` or [`Weak`] pointers to the same value must not be dereferenced
    /// for the duration of the returned borrow.
    /// This is trivially the case if no such pointers exist,
    /// for example immediately after `Rc::new`.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    ///
    /// let mut x = Rc::new(String::new());
    /// unsafe {
    ///     Rc::get_mut_unchecked(&mut x).push_str("foo")
    /// }
    /// assert_eq!(*x, "foo");
    /// ```
    #[inline]
    #[unstable(feature = "get_mut_unchecked", issue = "63292")]
    pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
        &mut this.ptr.as_mut().value
    }

    #[inline]
    #[stable(feature = "ptr_eq", since = "1.17.0")]
    /// Returns `true` if the two `Rc`s point to the same value (not
    /// just values that compare as equal).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    /// let same_five = Rc::clone(&five);
    /// let other_five = Rc::new(5);
    ///
    /// assert!(Rc::ptr_eq(&five, &same_five));
    /// assert!(!Rc::ptr_eq(&five, &other_five));
    /// ```
    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
        this.ptr.as_ptr() == other.ptr.as_ptr()
    }
}

impl<T: Clone> Rc<T> {
    /// Makes a mutable reference into the given `Rc`.
    ///
    /// If there are other `Rc` pointers to the same value, then `make_mut` will
    /// [`clone`] the inner value to ensure unique ownership.  This is also
    /// referred to as clone-on-write.
    ///
    /// If there are no other `Rc` pointers to this value, then [`Weak`]
    /// pointers to this value will be dissassociated.
    ///
    /// See also [`get_mut`], which will fail rather than cloning.
    ///
    /// [`Weak`]: struct.Weak.html
    /// [`clone`]: ../../std/clone/trait.Clone.html#tymethod.clone
    /// [`get_mut`]: struct.Rc.html#method.get_mut
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let mut data = Rc::new(5);
    ///
    /// *Rc::make_mut(&mut data) += 1;        // Won't clone anything
    /// let mut other_data = Rc::clone(&data);    // Won't clone inner data
    /// *Rc::make_mut(&mut data) += 1;        // Clones inner data
    /// *Rc::make_mut(&mut data) += 1;        // Won't clone anything
    /// *Rc::make_mut(&mut other_data) *= 2;  // Won't clone anything
    ///
    /// // Now `data` and `other_data` point to different values.
    /// assert_eq!(*data, 8);
    /// assert_eq!(*other_data, 12);
    /// ```
    ///
    /// [`Weak`] pointers will be dissassociated:
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let mut data = Rc::new(75);
    /// let weak = Rc::downgrade(&data);
    ///
    /// assert!(75 == *data);
    /// assert!(75 == *weak.upgrade().unwrap());
    ///
    /// *Rc::make_mut(&mut data) += 1;
    ///
    /// assert!(76 == *data);
    /// assert!(weak.upgrade().is_none());
    /// ```
    #[inline]
    #[stable(feature = "rc_unique", since = "1.4.0")]
    pub fn make_mut(this: &mut Self) -> &mut T {
        if Rc::strong_count(this) != 1 {
            // Gotta clone the data, there are other Rcs
            *this = Rc::new((**this).clone())
        } else if Rc::weak_count(this) != 0 {
            // Can just steal the data, all that's left is Weaks
            unsafe {
                let mut swap = Rc::new(ptr::read(&this.ptr.as_ref().value));
                mem::swap(this, &mut swap);
                swap.dec_strong();
                // Remove implicit strong-weak ref (no need to craft a fake
                // Weak here -- we know other Weaks can clean up for us)
                swap.dec_weak();
                forget(swap);
            }
        }
        // This unsafety is ok because we're guaranteed that the pointer
        // returned is the *only* pointer that will ever be returned to T. Our
        // reference count is guaranteed to be 1 at this point, and we required
        // the `Rc<T>` itself to be `mut`, so we're returning the only possible
        // reference to the inner value.
        unsafe {
            &mut this.ptr.as_mut().value
        }
    }
}

impl Rc<dyn Any> {
    #[inline]
    #[stable(feature = "rc_downcast", since = "1.29.0")]
    /// Attempt to downcast the `Rc<dyn Any>` to a concrete type.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::any::Any;
    /// use std::rc::Rc;
    ///
    /// fn print_if_string(value: Rc<dyn Any>) {
    ///     if let Ok(string) = value.downcast::<String>() {
    ///         println!("String ({}): {}", string.len(), string);
    ///     }
    /// }
    ///
    /// fn main() {
    ///     let my_string = "Hello World".to_string();
    ///     print_if_string(Rc::new(my_string));
    ///     print_if_string(Rc::new(0i8));
    /// }
    /// ```
    pub fn downcast<T: Any>(self) -> Result<Rc<T>, Rc<dyn Any>> {
        if (*self).is::<T>() {
            let ptr = self.ptr.cast::<RcBox<T>>();
            forget(self);
            Ok(Rc::from_inner(ptr))
        } else {
            Err(self)
        }
    }
}

impl<T: ?Sized> Rc<T> {
    /// Allocates an `RcBox<T>` with sufficient space for
    /// a possibly-unsized value where the value has the layout provided.
    ///
    /// The function `mem_to_rcbox` is called with the data pointer
    /// and must return back a (potentially fat)-pointer for the `RcBox<T>`.
    unsafe fn allocate_for_layout(
        value_layout: Layout,
        mem_to_rcbox: impl FnOnce(*mut u8) -> *mut RcBox<T>
    ) -> *mut RcBox<T> {
        // Calculate layout using the given value layout.
        // Previously, layout was calculated on the expression
        // `&*(ptr as *const RcBox<T>)`, but this created a misaligned
        // reference (see #54908).
        let layout = Layout::new::<RcBox<()>>()
            .extend(value_layout).unwrap().0
            .pad_to_align().unwrap();

        // Allocate for the layout.
        let mem = Global.alloc(layout)
            .unwrap_or_else(|_| handle_alloc_error(layout));

        // Initialize the RcBox
        let inner = mem_to_rcbox(mem.as_ptr());
        debug_assert_eq!(Layout::for_value(&*inner), layout);

        ptr::write(&mut (*inner).strong, Cell::new(1));
        ptr::write(&mut (*inner).weak, Cell::new(1));

        inner
    }

    /// Allocates an `RcBox<T>` with sufficient space for an unsized value
    unsafe fn allocate_for_ptr(ptr: *const T) -> *mut RcBox<T> {
        // Allocate for the `RcBox<T>` using the given value.
        Self::allocate_for_layout(
            Layout::for_value(&*ptr),
            |mem| set_data_ptr(ptr as *mut T, mem) as *mut RcBox<T>,
        )
    }

    fn from_box(v: Box<T>) -> Rc<T> {
        unsafe {
            let box_unique = Box::into_unique(v);
            let bptr = box_unique.as_ptr();

            let value_size = size_of_val(&*bptr);
            let ptr = Self::allocate_for_ptr(bptr);

            // Copy value as bytes
            ptr::copy_nonoverlapping(
                bptr as *const T as *const u8,
                &mut (*ptr).value as *mut _ as *mut u8,
                value_size);

            // Free the allocation without dropping its contents
            box_free(box_unique);

            Self::from_ptr(ptr)
        }
    }
}

impl<T> Rc<[T]> {
    /// Allocates an `RcBox<[T]>` with the given length.
    unsafe fn allocate_for_slice(len: usize) -> *mut RcBox<[T]> {
        Self::allocate_for_layout(
            Layout::array::<T>(len).unwrap(),
            |mem| ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut RcBox<[T]>,
        )
    }
}

/// Sets the data pointer of a `?Sized` raw pointer.
///
/// For a slice/trait object, this sets the `data` field and leaves the rest
/// unchanged. For a sized raw pointer, this simply sets the pointer.
unsafe fn set_data_ptr<T: ?Sized, U>(mut ptr: *mut T, data: *mut U) -> *mut T {
    ptr::write(&mut ptr as *mut _ as *mut *mut u8, data as *mut u8);
    ptr
}

impl<T> Rc<[T]> {
    /// Copy elements from slice into newly allocated Rc<[T]>
    ///
    /// Unsafe because the caller must either take ownership or bind `T: Copy`
    unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> {
        let ptr = Self::allocate_for_slice(v.len());

        ptr::copy_nonoverlapping(
            v.as_ptr(),
            &mut (*ptr).value as *mut [T] as *mut T,
            v.len());

        Self::from_ptr(ptr)
    }

    /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size.
    ///
    /// Behavior is undefined should the size be wrong.
    unsafe fn from_iter_exact(iter: impl iter::Iterator<Item = T>, len: usize) -> Rc<[T]> {
        // Panic guard while cloning T elements.
        // In the event of a panic, elements that have been written
        // into the new RcBox will be dropped, then the memory freed.
        struct Guard<T> {
            mem: NonNull<u8>,
            elems: *mut T,
            layout: Layout,
            n_elems: usize,
        }

        impl<T> Drop for Guard<T> {
            fn drop(&mut self) {
                unsafe {
                    let slice = from_raw_parts_mut(self.elems, self.n_elems);
                    ptr::drop_in_place(slice);

                    Global.dealloc(self.mem, self.layout);
                }
            }
        }

        let ptr = Self::allocate_for_slice(len);

        let mem = ptr as *mut _ as *mut u8;
        let layout = Layout::for_value(&*ptr);

        // Pointer to first element
        let elems = &mut (*ptr).value as *mut [T] as *mut T;

        let mut guard = Guard {
            mem: NonNull::new_unchecked(mem),
            elems,
            layout,
            n_elems: 0,
        };

        for (i, item) in iter.enumerate() {
            ptr::write(elems.add(i), item);
            guard.n_elems += 1;
        }

        // All clear. Forget the guard so it doesn't free the new RcBox.
        forget(guard);

        Self::from_ptr(ptr)
    }
}

/// Specialization trait used for `From<&[T]>`.
trait RcFromSlice<T> {
    fn from_slice(slice: &[T]) -> Self;
}

impl<T: Clone> RcFromSlice<T> for Rc<[T]> {
    #[inline]
    default fn from_slice(v: &[T]) -> Self {
        unsafe {
            Self::from_iter_exact(v.iter().cloned(), v.len())
        }
    }
}

impl<T: Copy> RcFromSlice<T> for Rc<[T]> {
    #[inline]
    fn from_slice(v: &[T]) -> Self {
        unsafe { Rc::copy_from_slice(v) }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for Rc<T> {
    type Target = T;

    #[inline(always)]
    fn deref(&self) -> &T {
        &self.inner().value
    }
}

#[unstable(feature = "receiver_trait", issue = "0")]
impl<T: ?Sized> Receiver for Rc<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T: ?Sized> Drop for Rc<T> {
    /// Drops the `Rc`.
    ///
    /// This will decrement the strong reference count. If the strong reference
    /// count reaches zero then the only other references (if any) are
    /// [`Weak`], so we `drop` the inner value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// struct Foo;
    ///
    /// impl Drop for Foo {
    ///     fn drop(&mut self) {
    ///         println!("dropped!");
    ///     }
    /// }
    ///
    /// let foo  = Rc::new(Foo);
    /// let foo2 = Rc::clone(&foo);
    ///
    /// drop(foo);    // Doesn't print anything
    /// drop(foo2);   // Prints "dropped!"
    /// ```
    ///
    /// [`Weak`]: ../../std/rc/struct.Weak.html
    fn drop(&mut self) {
        unsafe {
            self.dec_strong();
            if self.strong() == 0 {
                // destroy the contained object
                ptr::drop_in_place(self.ptr.as_mut());

                // remove the implicit "strong weak" pointer now that we've
                // destroyed the contents.
                self.dec_weak();

                if self.weak() == 0 {
                    Global.dealloc(self.ptr.cast(), Layout::for_value(self.ptr.as_ref()));
                }
            }
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Clone for Rc<T> {
    /// Makes a clone of the `Rc` pointer.
    ///
    /// This creates another pointer to the same inner value, increasing the
    /// strong reference count.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// let _ = Rc::clone(&five);
    /// ```
    #[inline]
    fn clone(&self) -> Rc<T> {
        self.inc_strong();
        Self::from_inner(self.ptr)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Rc<T> {
    /// Creates a new `Rc<T>`, with the `Default` value for `T`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let x: Rc<i32> = Default::default();
    /// assert_eq!(*x, 0);
    /// ```
    #[inline]
    fn default() -> Rc<T> {
        Rc::new(Default::default())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
trait RcEqIdent<T: ?Sized + PartialEq> {
    fn eq(&self, other: &Rc<T>) -> bool;
    fn ne(&self, other: &Rc<T>) -> bool;
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq> RcEqIdent<T> for Rc<T> {
    #[inline]
    default fn eq(&self, other: &Rc<T>) -> bool {
        **self == **other
    }

    #[inline]
    default fn ne(&self, other: &Rc<T>) -> bool {
        **self != **other
    }
}

/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
/// would otherwise add a cost to all equality checks on refs. We assume that `Rc`s are used to
/// store large values, that are slow to clone, but also heavy to check for equality, causing this
/// cost to pay off more easily. It's also more likely to have two `Rc` clones, that point to
/// the same value, than two `&T`s.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Eq> RcEqIdent<T> for Rc<T> {
    #[inline]
    fn eq(&self, other: &Rc<T>) -> bool {
        Rc::ptr_eq(self, other) || **self == **other
    }

    #[inline]
    fn ne(&self, other: &Rc<T>) -> bool {
        !Rc::ptr_eq(self, other) && **self != **other
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq> PartialEq for Rc<T> {
    /// Equality for two `Rc`s.
    ///
    /// Two `Rc`s are equal if their inner values are equal.
    ///
    /// If `T` also implements `Eq`, two `Rc`s that point to the same value are
    /// always equal.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five == Rc::new(5));
    /// ```
    #[inline]
    fn eq(&self, other: &Rc<T>) -> bool {
        RcEqIdent::eq(self, other)
    }

    /// Inequality for two `Rc`s.
    ///
    /// Two `Rc`s are unequal if their inner values are unequal.
    ///
    /// If `T` also implements `Eq`, two `Rc`s that point to the same value are
    /// never unequal.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five != Rc::new(6));
    /// ```
    #[inline]
    fn ne(&self, other: &Rc<T>) -> bool {
        RcEqIdent::ne(self, other)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Eq> Eq for Rc<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialOrd> PartialOrd for Rc<T> {
    /// Partial comparison for two `Rc`s.
    ///
    /// The two are compared by calling `partial_cmp()` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    /// use std::cmp::Ordering;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
    /// ```
    #[inline(always)]
    fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering> {
        (**self).partial_cmp(&**other)
    }

    /// Less-than comparison for two `Rc`s.
    ///
    /// The two are compared by calling `<` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five < Rc::new(6));
    /// ```
    #[inline(always)]
    fn lt(&self, other: &Rc<T>) -> bool {
        **self < **other
    }

    /// 'Less than or equal to' comparison for two `Rc`s.
    ///
    /// The two are compared by calling `<=` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five <= Rc::new(5));
    /// ```
    #[inline(always)]
    fn le(&self, other: &Rc<T>) -> bool {
        **self <= **other
    }

    /// Greater-than comparison for two `Rc`s.
    ///
    /// The two are compared by calling `>` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five > Rc::new(4));
    /// ```
    #[inline(always)]
    fn gt(&self, other: &Rc<T>) -> bool {
        **self > **other
    }

    /// 'Greater than or equal to' comparison for two `Rc`s.
    ///
    /// The two are compared by calling `>=` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five >= Rc::new(5));
    /// ```
    #[inline(always)]
    fn ge(&self, other: &Rc<T>) -> bool {
        **self >= **other
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Ord> Ord for Rc<T> {
    /// Comparison for two `Rc`s.
    ///
    /// The two are compared by calling `cmp()` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    /// use std::cmp::Ordering;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
    /// ```
    #[inline]
    fn cmp(&self, other: &Rc<T>) -> Ordering {
        (**self).cmp(&**other)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for Rc<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state);
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Display> fmt::Display for Rc<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for Rc<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> fmt::Pointer for Rc<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Pointer::fmt(&(&**self as *const T), f)
    }
}

#[stable(feature = "from_for_ptrs", since = "1.6.0")]
impl<T> From<T> for Rc<T> {
    fn from(t: T) -> Self {
        Rc::new(t)
    }
}

#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl<T: Clone> From<&[T]> for Rc<[T]> {
    #[inline]
    fn from(v: &[T]) -> Rc<[T]> {
        <Self as RcFromSlice<T>>::from_slice(v)
    }
}

#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl From<&str> for Rc<str> {
    #[inline]
    fn from(v: &str) -> Rc<str> {
        let rc = Rc::<[u8]>::from(v.as_bytes());
        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
    }
}

#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl From<String> for Rc<str> {
    #[inline]
    fn from(v: String) -> Rc<str> {
        Rc::from(&v[..])
    }
}

#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl<T: ?Sized> From<Box<T>> for Rc<T> {
    #[inline]
    fn from(v: Box<T>) -> Rc<T> {
        Rc::from_box(v)
    }
}

#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl<T> From<Vec<T>> for Rc<[T]> {
    #[inline]
    fn from(mut v: Vec<T>) -> Rc<[T]> {
        unsafe {
            let rc = Rc::copy_from_slice(&v);

            // Allow the Vec to free its memory, but not destroy its contents
            v.set_len(0);

            rc
        }
    }
}

#[unstable(feature = "boxed_slice_try_from", issue = "0")]
impl<T, const N: usize> TryFrom<Rc<[T]>> for Rc<[T; N]>
where
    [T; N]: LengthAtMost32,
{
    type Error = Rc<[T]>;

    fn try_from(boxed_slice: Rc<[T]>) -> Result<Self, Self::Error> {
        if boxed_slice.len() == N {
            Ok(unsafe { Rc::from_raw(Rc::into_raw(boxed_slice) as *mut [T; N]) })
        } else {
            Err(boxed_slice)
        }
    }
}

#[stable(feature = "shared_from_iter", since = "1.37.0")]
impl<T> iter::FromIterator<T> for Rc<[T]> {
    /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`.
    ///
    /// # Performance characteristics
    ///
    /// ## The general case
    ///
    /// In the general case, collecting into `Rc<[T]>` is done by first
    /// collecting into a `Vec<T>`. That is, when writing the following:
    ///
    /// ```rust
    /// # use std::rc::Rc;
    /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
    /// ```
    ///
    /// this behaves as if we wrote:
    ///
    /// ```rust
    /// # use std::rc::Rc;
    /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
    ///     .collect::<Vec<_>>() // The first set of allocations happens here.
    ///     .into(); // A second allocation for `Rc<[T]>` happens here.
    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
    /// ```
    ///
    /// This will allocate as many times as needed for constructing the `Vec<T>`
    /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`.
    ///
    /// ## Iterators of known length
    ///
    /// When your `Iterator` implements `TrustedLen` and is of an exact size,
    /// a single allocation will be made for the `Rc<[T]>`. For example:
    ///
    /// ```rust
    /// # use std::rc::Rc;
    /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
    /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
    /// ```
    fn from_iter<I: iter::IntoIterator<Item = T>>(iter: I) -> Self {
        RcFromIter::from_iter(iter.into_iter())
    }
}

/// Specialization trait used for collecting into `Rc<[T]>`.
trait RcFromIter<T, I> {
    fn from_iter(iter: I) -> Self;
}

impl<T, I: Iterator<Item = T>> RcFromIter<T, I> for Rc<[T]> {
    default fn from_iter(iter: I) -> Self {
        iter.collect::<Vec<T>>().into()
    }
}

impl<T, I: iter::TrustedLen<Item = T>> RcFromIter<T, I> for Rc<[T]>  {
    default fn from_iter(iter: I) -> Self {
        // This is the case for a `TrustedLen` iterator.
        let (low, high) = iter.size_hint();
        if let Some(high) = high {
            debug_assert_eq!(
                low, high,
                "TrustedLen iterator's size hint is not exact: {:?}",
                (low, high)
            );

            unsafe {
                // SAFETY: We need to ensure that the iterator has an exact length and we have.
                Rc::from_iter_exact(iter, low)
            }
        } else {
            // Fall back to normal implementation.
            iter.collect::<Vec<T>>().into()
        }
    }
}

impl<'a, T: 'a + Clone> RcFromIter<&'a T, slice::Iter<'a, T>> for Rc<[T]> {
    fn from_iter(iter: slice::Iter<'a, T>) -> Self {
        // Delegate to `impl<T: Clone> From<&[T]> for Rc<[T]>`.
        //
        // In the case that `T: Copy`, we get to use `ptr::copy_nonoverlapping`
        // which is even more performant.
        //
        // In the fall-back case we have `T: Clone`. This is still better
        // than the `TrustedLen` implementation as slices have a known length
        // and so we get to avoid calling `size_hint` and avoid the branching.
        iter.as_slice().into()
    }
}

/// `Weak` is a version of [`Rc`] that holds a non-owning reference to the
/// managed value. The value is accessed by calling [`upgrade`] on the `Weak`
/// pointer, which returns an [`Option`]`<`[`Rc`]`<T>>`.
///
/// Since a `Weak` reference does not count towards ownership, it will not
/// prevent the inner value from being dropped, and `Weak` itself makes no
/// guarantees about the value still being present and may return [`None`]
/// when [`upgrade`]d.
///
/// A `Weak` pointer is useful for keeping a temporary reference to the value
/// within [`Rc`] without extending its lifetime. It is also used to prevent
/// circular references between [`Rc`] pointers, since mutual owning references
/// would never allow either [`Rc`] to be dropped. For example, a tree could
/// have strong [`Rc`] pointers from parent nodes to children, and `Weak`
/// pointers from children back to their parents.
///
/// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`].
///
/// [`Rc`]: struct.Rc.html
/// [`Rc::downgrade`]: struct.Rc.html#method.downgrade
/// [`upgrade`]: struct.Weak.html#method.upgrade
/// [`Option`]: ../../std/option/enum.Option.html
/// [`None`]: ../../std/option/enum.Option.html#variant.None
#[stable(feature = "rc_weak", since = "1.4.0")]
pub struct Weak<T: ?Sized> {
    // This is a `NonNull` to allow optimizing the size of this type in enums,
    // but it is not necessarily a valid pointer.
    // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
    // to allocate space on the heap.  That's not a value a real pointer
    // will ever have because RcBox has alignment at least 2.
    ptr: NonNull<RcBox<T>>,
}

#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized> !marker::Send for Weak<T> {}
#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized> !marker::Sync for Weak<T> {}

#[unstable(feature = "coerce_unsized", issue = "27732")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}

#[unstable(feature = "dispatch_from_dyn", issue = "0")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}

impl<T> Weak<T> {
    /// Constructs a new `Weak<T>`, without allocating any memory.
    /// Calling [`upgrade`] on the return value always gives [`None`].
    ///
    /// [`upgrade`]: #method.upgrade
    /// [`None`]: ../../std/option/enum.Option.html
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Weak;
    ///
    /// let empty: Weak<i64> = Weak::new();
    /// assert!(empty.upgrade().is_none());
    /// ```
    #[stable(feature = "downgraded_weak", since = "1.10.0")]
    pub fn new() -> Weak<T> {
        Weak {
            ptr: NonNull::new(usize::MAX as *mut RcBox<T>).expect("MAX is not 0"),
        }
    }

    /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
    ///
    /// It is up to the caller to ensure that the object is still alive when accessing it through
    /// the pointer.
    ///
    /// The pointer may be [`null`] or be dangling in case the object has already been destroyed.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(weak_into_raw)]
    ///
    /// use std::rc::Rc;
    /// use std::ptr;
    ///
    /// let strong = Rc::new("hello".to_owned());
    /// let weak = Rc::downgrade(&strong);
    /// // Both point to the same object
    /// assert!(ptr::eq(&*strong, weak.as_raw()));
    /// // The strong here keeps it alive, so we can still access the object.
    /// assert_eq!("hello", unsafe { &*weak.as_raw() });
    ///
    /// drop(strong);
    /// // But not any more. We can do weak.as_raw(), but accessing the pointer would lead to
    /// // undefined behaviour.
    /// // assert_eq!("hello", unsafe { &*weak.as_raw() });
    /// ```
    ///
    /// [`null`]: ../../std/ptr/fn.null.html
    #[unstable(feature = "weak_into_raw", issue = "60728")]
    pub fn as_raw(&self) -> *const T {
        match self.inner() {
            None => ptr::null(),
            Some(inner) => {
                let offset = data_offset_sized::<T>();
                let ptr = inner as *const RcBox<T>;
                // Note: while the pointer we create may already point to dropped value, the
                // allocation still lives (it must hold the weak point as long as we are alive).
                // Therefore, the offset is OK to do, it won't get out of the allocation.
                let ptr = unsafe { (ptr as *const u8).offset(offset) };
                ptr as *const T
            }
        }
    }

    /// Consumes the `Weak<T>` and turns it into a raw pointer.
    ///
    /// This converts the weak pointer into a raw pointer, preserving the original weak count. It
    /// can be turned back into the `Weak<T>` with [`from_raw`].
    ///
    /// The same restrictions of accessing the target of the pointer as with
    /// [`as_raw`] apply.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(weak_into_raw)]
    ///
    /// use std::rc::{Rc, Weak};
    ///
    /// let strong = Rc::new("hello".to_owned());
    /// let weak = Rc::downgrade(&strong);
    /// let raw = weak.into_raw();
    ///
    /// assert_eq!(1, Rc::weak_count(&strong));
    /// assert_eq!("hello", unsafe { &*raw });
    ///
    /// drop(unsafe { Weak::from_raw(raw) });
    /// assert_eq!(0, Rc::weak_count(&strong));
    /// ```
    ///
    /// [`from_raw`]: struct.Weak.html#method.from_raw
    /// [`as_raw`]: struct.Weak.html#method.as_raw
    #[unstable(feature = "weak_into_raw", issue = "60728")]
    pub fn into_raw(self) -> *const T {
        let result = self.as_raw();
        mem::forget(self);
        result
    }

    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
    ///
    /// This can be used to safely get a strong reference (by calling [`upgrade`]
    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
    ///
    /// It takes ownership of one weak count. In case a [`null`] is passed, a dangling [`Weak`] is
    /// returned.
    ///
    /// # Safety
    ///
    /// The pointer must represent one valid weak count. In other words, it must point to `T` which
    /// is or *was* managed by an [`Rc`] and the weak count of that [`Rc`] must not have reached
    /// 0. It is allowed for the strong count to be 0.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(weak_into_raw)]
    ///
    /// use std::rc::{Rc, Weak};
    ///
    /// let strong = Rc::new("hello".to_owned());
    ///
    /// let raw_1 = Rc::downgrade(&strong).into_raw();
    /// let raw_2 = Rc::downgrade(&strong).into_raw();
    ///
    /// assert_eq!(2, Rc::weak_count(&strong));
    ///
    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
    /// assert_eq!(1, Rc::weak_count(&strong));
    ///
    /// drop(strong);
    ///
    /// // Decrement the last weak count.
    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
    /// ```
    ///
    /// [`null`]: ../../std/ptr/fn.null.html
    /// [`into_raw`]: struct.Weak.html#method.into_raw
    /// [`upgrade`]: struct.Weak.html#method.upgrade
    /// [`Rc`]: struct.Rc.html
    /// [`Weak`]: struct.Weak.html
    #[unstable(feature = "weak_into_raw", issue = "60728")]
    pub unsafe fn from_raw(ptr: *const T) -> Self {
        if ptr.is_null() {
            Self::new()
        } else {
            // See Rc::from_raw for details
            let offset = data_offset(ptr);
            let fake_ptr = ptr as *mut RcBox<T>;
            let ptr = set_data_ptr(fake_ptr, (ptr as *mut u8).offset(-offset));
            Weak {
                ptr: NonNull::new(ptr).expect("Invalid pointer passed to from_raw"),
            }
        }
    }
}

pub(crate) fn is_dangling<T: ?Sized>(ptr: NonNull<T>) -> bool {
    let address = ptr.as_ptr() as *mut () as usize;
    address == usize::MAX
}

impl<T: ?Sized> Weak<T> {
    /// Attempts to upgrade the `Weak` pointer to an [`Rc`], extending
    /// the lifetime of the value if successful.
    ///
    /// Returns [`None`] if the value has since been dropped.
    ///
    /// [`Rc`]: struct.Rc.html
    /// [`None`]: ../../std/option/enum.Option.html
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// let weak_five = Rc::downgrade(&five);
    ///
    /// let strong_five: Option<Rc<_>> = weak_five.upgrade();
    /// assert!(strong_five.is_some());
    ///
    /// // Destroy all strong pointers.
    /// drop(strong_five);
    /// drop(five);
    ///
    /// assert!(weak_five.upgrade().is_none());
    /// ```
    #[stable(feature = "rc_weak", since = "1.4.0")]
    pub fn upgrade(&self) -> Option<Rc<T>> {
        let inner = self.inner()?;
        if inner.strong() == 0 {
            None
        } else {
            inner.inc_strong();
            Some(Rc::from_inner(self.ptr))
        }
    }

    /// Gets the number of strong (`Rc`) pointers pointing to this value.
    ///
    /// If `self` was created using [`Weak::new`], this will return 0.
    ///
    /// [`Weak::new`]: #method.new
    #[unstable(feature = "weak_counts", issue = "57977")]
    pub fn strong_count(&self) -> usize {
        if let Some(inner) = self.inner() {
            inner.strong()
        } else {
            0
        }
    }

    /// Gets the number of `Weak` pointers pointing to this value.
    ///
    /// If `self` was created using [`Weak::new`], this will return `None`. If
    /// not, the returned value is at least 1, since `self` still points to the
    /// value.
    ///
    /// [`Weak::new`]: #method.new
    #[unstable(feature = "weak_counts", issue = "57977")]
    pub fn weak_count(&self) -> Option<usize> {
        self.inner().map(|inner| {
            if inner.strong() > 0 {
                inner.weak() - 1  // subtract the implicit weak ptr
            } else {
                inner.weak()
            }
        })
    }

    /// Returns `None` when the pointer is dangling and there is no allocated `RcBox`
    /// (i.e., when this `Weak` was created by `Weak::new`).
    #[inline]
    fn inner(&self) -> Option<&RcBox<T>> {
        if is_dangling(self.ptr) {
            None
        } else {
            Some(unsafe { self.ptr.as_ref() })
        }
    }

    /// Returns `true` if the two `Weak`s point to the same value (not just
    /// values that compare as equal), or if both don't point to any value
    /// (because they were created with `Weak::new()`).
    ///
    /// # Notes
    ///
    /// Since this compares pointers it means that `Weak::new()` will equal each
    /// other, even though they don't point to any value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let first_rc = Rc::new(5);
    /// let first = Rc::downgrade(&first_rc);
    /// let second = Rc::downgrade(&first_rc);
    ///
    /// assert!(first.ptr_eq(&second));
    ///
    /// let third_rc = Rc::new(5);
    /// let third = Rc::downgrade(&third_rc);
    ///
    /// assert!(!first.ptr_eq(&third));
    /// ```
    ///
    /// Comparing `Weak::new`.
    ///
    /// ```
    /// use std::rc::{Rc, Weak};
    ///
    /// let first = Weak::new();
    /// let second = Weak::new();
    /// assert!(first.ptr_eq(&second));
    ///
    /// let third_rc = Rc::new(());
    /// let third = Rc::downgrade(&third_rc);
    /// assert!(!first.ptr_eq(&third));
    /// ```
    #[inline]
    #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
    pub fn ptr_eq(&self, other: &Self) -> bool {
        self.ptr.as_ptr() == other.ptr.as_ptr()
    }
}

#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized> Drop for Weak<T> {
    /// Drops the `Weak` pointer.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::{Rc, Weak};
    ///
    /// struct Foo;
    ///
    /// impl Drop for Foo {
    ///     fn drop(&mut self) {
    ///         println!("dropped!");
    ///     }
    /// }
    ///
    /// let foo = Rc::new(Foo);
    /// let weak_foo = Rc::downgrade(&foo);
    /// let other_weak_foo = Weak::clone(&weak_foo);
    ///
    /// drop(weak_foo);   // Doesn't print anything
    /// drop(foo);        // Prints "dropped!"
    ///
    /// assert!(other_weak_foo.upgrade().is_none());
    /// ```
    fn drop(&mut self) {
        if let Some(inner) = self.inner() {
            inner.dec_weak();
            // the weak count starts at 1, and will only go to zero if all
            // the strong pointers have disappeared.
            if inner.weak() == 0 {
                unsafe {
                    Global.dealloc(self.ptr.cast(), Layout::for_value(self.ptr.as_ref()));
                }
            }
        }
    }
}

#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized> Clone for Weak<T> {
    /// Makes a clone of the `Weak` pointer that points to the same value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::{Rc, Weak};
    ///
    /// let weak_five = Rc::downgrade(&Rc::new(5));
    ///
    /// let _ = Weak::clone(&weak_five);
    /// ```
    #[inline]
    fn clone(&self) -> Weak<T> {
        if let Some(inner) = self.inner() {
            inner.inc_weak()
        }
        Weak { ptr: self.ptr }
    }
}

#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "(Weak)")
    }
}

#[stable(feature = "downgraded_weak", since = "1.10.0")]
impl<T> Default for Weak<T> {
    /// Constructs a new `Weak<T>`, allocating memory for `T` without initializing
    /// it. Calling [`upgrade`] on the return value always gives [`None`].
    ///
    /// [`None`]: ../../std/option/enum.Option.html
    /// [`upgrade`]: ../../std/rc/struct.Weak.html#method.upgrade
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Weak;
    ///
    /// let empty: Weak<i64> = Default::default();
    /// assert!(empty.upgrade().is_none());
    /// ```
    fn default() -> Weak<T> {
        Weak::new()
    }
}

// NOTE: We checked_add here to deal with mem::forget safely. In particular
// if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then
// you can free the allocation while outstanding Rcs (or Weaks) exist.
// We abort because this is such a degenerate scenario that we don't care about
// what happens -- no real program should ever experience this.
//
// This should have negligible overhead since you don't actually need to
// clone these much in Rust thanks to ownership and move-semantics.

#[doc(hidden)]
trait RcBoxPtr<T: ?Sized> {
    fn inner(&self) -> &RcBox<T>;

    #[inline]
    fn strong(&self) -> usize {
        self.inner().strong.get()
    }

    #[inline]
    fn inc_strong(&self) {
        let strong = self.strong();

        // We want to abort on overflow instead of dropping the value.
        // The reference count will never be zero when this is called;
        // nevertheless, we insert an abort here to hint LLVM at
        // an otherwise missed optimization.
        if strong == 0 || strong == usize::max_value() {
            unsafe { abort(); }
        }
        self.inner().strong.set(strong + 1);
    }

    #[inline]
    fn dec_strong(&self) {
        self.inner().strong.set(self.strong() - 1);
    }

    #[inline]
    fn weak(&self) -> usize {
        self.inner().weak.get()
    }

    #[inline]
    fn inc_weak(&self) {
        let weak = self.weak();

        // We want to abort on overflow instead of dropping the value.
        // The reference count will never be zero when this is called;
        // nevertheless, we insert an abort here to hint LLVM at
        // an otherwise missed optimization.
        if weak == 0 || weak == usize::max_value() {
            unsafe { abort(); }
        }
        self.inner().weak.set(weak + 1);
    }

    #[inline]
    fn dec_weak(&self) {
        self.inner().weak.set(self.weak() - 1);
    }
}

impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
    #[inline(always)]
    fn inner(&self) -> &RcBox<T> {
        unsafe {
            self.ptr.as_ref()
        }
    }
}

impl<T: ?Sized> RcBoxPtr<T> for RcBox<T> {
    #[inline(always)]
    fn inner(&self) -> &RcBox<T> {
        self
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> borrow::Borrow<T> for Rc<T> {
    fn borrow(&self) -> &T {
        &**self
    }
}

#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized> AsRef<T> for Rc<T> {
    fn as_ref(&self) -> &T {
        &**self
    }
}

#[stable(feature = "pin", since = "1.33.0")]
impl<T: ?Sized> Unpin for Rc<T> { }

unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> isize {
    // Align the unsized value to the end of the `RcBox`.
    // Because it is ?Sized, it will always be the last field in memory.
    data_offset_align(align_of_val(&*ptr))
}

/// Computes the offset of the data field within `RcBox`.
///
/// Unlike [`data_offset`], this doesn't need the pointer, but it works only on `T: Sized`.
fn data_offset_sized<T>() -> isize {
    data_offset_align(align_of::<T>())
}

#[inline]
fn data_offset_align(align: usize) -> isize {
    let layout = Layout::new::<RcBox<()>>();
    (layout.size() + layout.padding_needed_for(align)) as isize
}