数据类型

ch03-02-data-types.md
commit 6598d3abac05ed1d0c45db92466ea49346d05e40

在 Rust 中,每一个值都属于某一个 数据类型data type),这告诉 Rust 它被指定为何种数据,以便明确数据处理方式。我们将看到两类数据类型子集:标量(scalar)和复合(compound)。

记住,Rust 是 静态类型statically typed)语言,也就是说在编译时就必须知道所有变量的类型。根据值及其使用方式,编译器通常可以推断出我们想要用的类型。当多种类型均有可能时,比如第二章的 “比较猜测的数字和秘密数字” 使用 parseString 转换为数字时,必须增加类型注解,像这样:


# #![allow(unused_variables)]
#fn main() {
let guess: u32 = "42".parse().expect("Not a number!");
#}

这里如果不添加类型注解,Rust 会显示如下错误,这说明编译器需要我们提供更多信息,来了解我们想要的类型:

error[E0282]: type annotations needed
 --> src/main.rs:2:9
  |
2 |     let guess = "42".parse().expect("Not a number!");
  |         ^^^^^
  |         |
  |         cannot infer type for `_`
  |         consider giving `guess` a type

你会看到其它数据类型的各种类型注解。

标量类型

标量scalar)类型代表一个单独的值。Rust 有四种基本的标量类型:整型、浮点型、布尔类型和字符类型。你可能在其他语言中见过它们。让我们深入了解它们在 Rust 中是如何工作的。

整型

整数 是一个没有小数部分的数字。我们在第二章使用过 u32 整数类型。该类型声明表明,它关联的值应该是一个占据 32 比特位的无符号整数(有符号整数类型以 i 开头而不是 u)。表格 3-1 展示了 Rust 内建的整数类型。在有符号列和无符号列中的每一个变体(例如,i16)都可以用来声明整数值的类型。

表格 3-1: Rust 中的整型

长度有符号无符号
8-biti8u8
16-biti16u16
32-biti32u32
64-biti64u64
128-biti128u128
archisizeusize

每一个变体都可以是有符号或无符号的,并有一个明确的大小。有符号无符号 代表数字能否为负值,换句话说,数字是否需要有一个符号(有符号数),或者永远为正而不需要符号(无符号数)。这有点像在纸上书写数字:当需要考虑符号的时候,数字以加号或减号作为前缀;然而,可以安全地假设为正数时,加号前缀通常省略。有符号数以补码形式(two’s complement representation) 存储。

每一个有符号的变体可以储存包含从 -(2n - 1) 到 2n - 1 - 1 在内的数字,这里 n 是变体使用的位数。所以 i8 可以储存从 -(27) 到 27 - 1 在内的数字,也就是从 -128 到 127。无符号的变体可以储存从 0 到 2n - 1 的数字,所以 u8 可以储存从 0 到 28 - 1 的数字,也就是从 0 到 255。

另外,isizeusize 类型依赖运行程序的计算机架构:64 位架构上它们是 64 位的, 32 位架构上它们是 32 位的。

可以使用表格 3-2 中的任何一种形式编写数字字面值。注意除 byte 以外的所有数字字面值允许使用类型后缀,例如 57u8,同时也允许使用 _ 做为分隔符以方便读数,例如1_000

表格 3-2: Rust 中的整型字面值

数字字面值例子
Decimal98_222
Hex0xff
Octal0o77
Binary0b1111_0000
Byte (u8 only)b'A'

那么该使用哪种类型的数字呢?如果拿不定主意,Rust 的默认类型通常就很好,数字类型默认是 i32:它通常是最快的,甚至在 64 位系统上也是。isizeusize 主要作为某些集合的索引。

整型溢出

比方说有一个 u8 ,它可以存放从零到 255 的值。那么当你将其修改为 256 时会发生什么呢?这被称为 “整型溢出”(“integer overflow” ),关于这一行为 Rust 有一些有趣的规则。当在 debug 模式编译时,Rust 检查这类问题并使程序 panic,这个术语被 Rust 用来表明程序因错误而退出。第九章 panic! 与不可恢复的错误” 部分会详细介绍 panic。

在 release 构建中,Rust 不检测溢出,相反会进行一种被称为二进制补码包装(two’s complement wrapping)的操作。简而言之,256 变成 0257 变成 1,依此类推。依赖整型溢出被认为是一种错误,即便可能出现这种行为。如果你确实需要这种行为,标准库中有一个类型显式提供此功能,Wrapping

浮点型

Rust 也有两个原生的 浮点数floating-point numbers)类型,它们是带小数点的数字。Rust 的浮点数类型是 f32f64,分别占 32 位和 64 位。默认类型是 f64,因为在现代 CPU 中,它与 f32 速度几乎一样,不过精度更高。

这是一个展示浮点数的实例:

文件名: src/main.rs

fn main() {
    let x = 2.0; // f64

    let y: f32 = 3.0; // f32
}

浮点数采用 IEEE-754 标准表示。f32 是单精度浮点数,f64 是双精度浮点数。

数值运算

Rust 中的所有数字类型都支持基本数学运算:加法、减法、乘法、除法和取余。下面的代码展示了如何在 let 语句中使用它们:

文件名: src/main.rs

fn main() {
    // 加法
    let sum = 5 + 10;

    // 减法
    let difference = 95.5 - 4.3;

    // 乘法
    let product = 4 * 30;

    // 除法
    let quotient = 56.7 / 32.2;

    // 取余
    let remainder = 43 % 5;
}

这些语句中的每个表达式使用了一个数学运算符并计算出了一个值,然后绑定给一个变量。附录 B 包含 Rust 提供的所有运算符的列表。

布尔型

正如其他大部分编程语言一样,Rust 中的布尔类型有两个可能的值:truefalse。Rust 中的布尔类型使用 bool 表示。例如:

文件名: src/main.rs

fn main() {
    let t = true;

    let f: bool = false; // 显式指定类型注解
}

使用布尔值的主要场景是条件表达式,例如 if 表达式。在 “控制流”(“Control Flow”) 部分将介绍 if 表达式在 Rust 中如何工作。

字符类型

目前为止只使用到了数字,不过 Rust 也支持字母。Rust 的 char 类型是语言中最原生的字母类型,如下代码展示了如何使用它。(注意 char 由单引号指定,不同于字符串使用双引号。)

文件名: src/main.rs

fn main() {
    let c = 'z';
    let z = 'ℤ';
    let heart_eyed_cat = '😻';
}

Rust 的 char 类型的大小为四个字节(four bytes),并代表了一个 Unicode 标量值(Unicode Scalar Value),这意味着它可以比 ASCII 表示更多内容。在 Rust 中,拼音字母(Accented letters),中文、日文、韩文等字符,emoji(绘文字)以及零长度的空白字符都是有效的 char 值。Unicode 标量值包含从 U+0000U+D7FFU+E000U+10FFFF 在内的值。不过,“字符” 并不是一个 Unicode 中的概念,所以人直觉上的 “字符” 可能与 Rust 中的 char 并不符合。第八章的 “使用字符串存储 UTF-8 编码的文本” 中将详细讨论这个主题。

复合类型

复合类型Compound types)可以将多个值组合成一个类型。Rust 有两个原生的复合类型:元组(tuple)和数组(array)。

元组类型

元组是一个将多个其他类型的值组合进一个复合类型的主要方式。元组长度固定:一旦声明,其长度不会增大或缩小。

我们使用包含在圆括号中的逗号分隔的值列表来创建一个元组。元组中的每一个位置都有一个类型,而且这些不同值的类型也不必是相同的。这个例子中使用了可选的类型注解:

文件名: src/main.rs

fn main() {
    let tup: (i32, f64, u8) = (500, 6.4, 1);
}

tup 变量绑定到整个元组上,因为元组是一个单独的复合元素。为了从元组中获取单个值,可以使用模式匹配(pattern matching)来解构(destructure)元组值,像这样:

文件名: src/main.rs

fn main() {
    let tup = (500, 6.4, 1);

    let (x, y, z) = tup;

    println!("The value of y is: {}", y);
}

程序首先创建了一个元组并绑定到 tup 变量上。接着使用了 let 和一个模式将 tup 分成了三个不同的变量,xyz。这叫做 解构destructuring),因为它将一个元组拆成了三个部分。最后,程序打印出了 y 的值,也就是 6.4

除了使用模式匹配解构外,也可以使用点号(.)后跟值的索引来直接访问它们。例如:

文件名: src/main.rs

fn main() {
    let x: (i32, f64, u8) = (500, 6.4, 1);

    let five_hundred = x.0;

    let six_point_four = x.1;

    let one = x.2;
}

这个程序创建了一个元组,x,并接着使用索引为每个元素创建新变量。跟大多数编程语言一样,元组的第一个索引值是 0。

数组类型

另一个包含多个值的方式是 数组array)。与元组不同,数组中的每个元素的类型必须相同。Rust 中的数组与一些其他语言中的数组不同,因为 Rust 中的数组是固定长度的:一旦声明,它们的长度不能增长或缩小。

Rust 中,数组中的值位于中括号内的逗号分隔的列表中:

文件名: src/main.rs

fn main() {
    let a = [1, 2, 3, 4, 5];
}

当你想要在栈(stack)而不是在堆(heap)上为数据分配空间(第四章将讨论栈与堆的更多内容),或者是想要确保总是有固定数量的元素时,数组非常有用。但是数组并不如 vector 类型灵活。vector 类型是标准库提供的一个 允许 增长和缩小长度的类似数组的集合类型。当不确定是应该使用数组还是 vector 的时候,你可能应该使用 vector。第八章会详细讨论 vector。

一个你可能想要使用数组而不是 vector 的例子是,当程序需要知道一年中月份的名字时。程序不大可能会去增加或减少月份。这时你可以使用数组,因为我们知道它总是包含 12 个元素:


# #![allow(unused_variables)]
#fn main() {
let months = ["January", "February", "March", "April", "May", "June", "July",
              "August", "September", "October", "November", "December"];
#}

可以像这样编写数组的类型:在方括号中包含每个元素的类型,后跟分号,再后跟数组元素的数量。


# #![allow(unused_variables)]
#fn main() {
let a: [i32; 5] = [1, 2, 3, 4, 5];
#}

这里,i32 是每个元素的类型。分号之后,数字 5 表明该数组包含五个元素。

这样编写数组的类型类似于另一个初始化数组的语法:如果你希望创建一个每个元素都相同的数组,可以在中括号内指定其初始值,后跟分号,再后跟数组的长度,如下所示:


# #![allow(unused_variables)]
#fn main() {
let a = [3; 5];
#}
访问数组元素

数组是一整块分配在栈上的内存。可以使用索引来访问数组的元素,像这样:

文件名: src/main.rs

fn main() {
    let a = [1, 2, 3, 4, 5];

    let first = a[0];
    let second = a[1];
}

在这个例子中,叫做 first 的变量的值是 1,因为它是数组索引 [0] 的值。变量 second 将会是数组索引 [1] 的值 2

无效的数组元素访问

如果我们访问数组结尾之后的元素会发生什么呢?比如你将上面的例子改成下面这样,这可以编译不过在运行时会因错误而退出:

文件名: src/main.rs

fn main() {
    let a = [1, 2, 3, 4, 5];
    let index = 10;

    let element = a[index];

    println!("The value of element is: {}", element);
}

使用 cargo run 运行代码后会产生如下结果:

$ cargo run
   Compiling arrays v0.1.0 (file:///projects/arrays)
    Finished dev [unoptimized + debuginfo] target(s) in 0.31 secs
     Running `target/debug/arrays`
thread 'main' panicked at 'index out of bounds: the len is 5 but the index is
 10', src/main.rs:5:19
note: Run with `RUST_BACKTRACE=1` for a backtrace.

编译并没有产生任何错误,不过程序会出现一个 运行时runtime)错误并且不会成功退出。当尝试用索引访问一个元素时,Rust 会检查指定的索引是否小于数组的长度。如果索引超出了数组长度,Rust 会 panic,这是 Rust 术语,它用于程序因为错误而退出的情况。

这是第一个在实战中遇到的 Rust 安全原则的例子。在很多底层语言中,并没有进行这类检查,这样当提供了一个不正确的索引时,就会访问无效的内存。通过立即退出而不是允许内存访问并继续执行,Rust 让你避开此类错误。第九章会讨论更多 Rust 的错误处理。