1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
//! Basic functions for dealing with memory. //! //! This module contains functions for querying the size and alignment of //! types, initializing and manipulating memory. #![stable(feature = "rust1", since = "1.0.0")] use crate::clone; use crate::cmp; use crate::fmt; use crate::hash; use crate::intrinsics; use crate::marker::{Copy, PhantomData, Sized}; use crate::ptr; mod manually_drop; #[stable(feature = "manually_drop", since = "1.20.0")] pub use manually_drop::ManuallyDrop; mod maybe_uninit; #[stable(feature = "maybe_uninit", since = "1.36.0")] pub use maybe_uninit::MaybeUninit; #[stable(feature = "rust1", since = "1.0.0")] #[doc(inline)] pub use crate::intrinsics::transmute; /// Takes ownership and "forgets" about the value **without running its destructor**. /// /// Any resources the value manages, such as heap memory or a file handle, will linger /// forever in an unreachable state. However, it does not guarantee that pointers /// to this memory will remain valid. /// /// * If you want to leak memory, see [`Box::leak`][leak]. /// * If you want to obtain a raw pointer to the memory, see [`Box::into_raw`][into_raw]. /// * If you want to dispose of a value properly, running its destructor, see /// [`mem::drop`][drop]. /// /// # Safety /// /// `forget` is not marked as `unsafe`, because Rust's safety guarantees /// do not include a guarantee that destructors will always run. For example, /// a program can create a reference cycle using [`Rc`][rc], or call /// [`process::exit`][exit] to exit without running destructors. Thus, allowing /// `mem::forget` from safe code does not fundamentally change Rust's safety /// guarantees. /// /// That said, leaking resources such as memory or I/O objects is usually undesirable, /// so `forget` is only recommended for specialized use cases like those shown below. /// /// Because forgetting a value is allowed, any `unsafe` code you write must /// allow for this possibility. You cannot return a value and expect that the /// caller will necessarily run the value's destructor. /// /// [rc]: ../../std/rc/struct.Rc.html /// [exit]: ../../std/process/fn.exit.html /// /// # Examples /// /// Leak an I/O object, never closing the file: /// /// ```no_run /// use std::mem; /// use std::fs::File; /// /// let file = File::open("foo.txt").unwrap(); /// mem::forget(file); /// ``` /// /// The practical use cases for `forget` are rather specialized and mainly come /// up in unsafe or FFI code. /// /// [drop]: fn.drop.html /// [uninit]: fn.uninitialized.html /// [clone]: ../clone/trait.Clone.html /// [swap]: fn.swap.html /// [box]: ../../std/boxed/struct.Box.html /// [leak]: ../../std/boxed/struct.Box.html#method.leak /// [into_raw]: ../../std/boxed/struct.Box.html#method.into_raw /// [ub]: ../../reference/behavior-considered-undefined.html #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn forget<T>(t: T) { ManuallyDrop::new(t); } /// Like [`forget`], but also accepts unsized values. /// /// This function is just a shim intended to be removed when the `unsized_locals` feature gets /// stabilized. /// /// [`forget`]: fn.forget.html #[inline] #[unstable(feature = "forget_unsized", issue = "0")] pub fn forget_unsized<T: ?Sized>(t: T) { unsafe { intrinsics::forget(t) } } /// Returns the size of a type in bytes. /// /// More specifically, this is the offset in bytes between successive elements /// in an array with that item type including alignment padding. Thus, for any /// type `T` and length `n`, `[T; n]` has a size of `n * size_of::<T>()`. /// /// In general, the size of a type is not stable across compilations, but /// specific types such as primitives are. /// /// The following table gives the size for primitives. /// /// Type | size_of::\<Type>() /// ---- | --------------- /// () | 0 /// bool | 1 /// u8 | 1 /// u16 | 2 /// u32 | 4 /// u64 | 8 /// u128 | 16 /// i8 | 1 /// i16 | 2 /// i32 | 4 /// i64 | 8 /// i128 | 16 /// f32 | 4 /// f64 | 8 /// char | 4 /// /// Furthermore, `usize` and `isize` have the same size. /// /// The types `*const T`, `&T`, `Box<T>`, `Option<&T>`, and `Option<Box<T>>` all have /// the same size. If `T` is Sized, all of those types have the same size as `usize`. /// /// The mutability of a pointer does not change its size. As such, `&T` and `&mut T` /// have the same size. Likewise for `*const T` and `*mut T`. /// /// # Size of `#[repr(C)]` items /// /// The `C` representation for items has a defined layout. With this layout, /// the size of items is also stable as long as all fields have a stable size. /// /// ## Size of Structs /// /// For `structs`, the size is determined by the following algorithm. /// /// For each field in the struct ordered by declaration order: /// /// 1. Add the size of the field. /// 2. Round up the current size to the nearest multiple of the next field's [alignment]. /// /// Finally, round the size of the struct to the nearest multiple of its [alignment]. /// The alignment of the struct is usually the largest alignment of all its /// fields; this can be changed with the use of `repr(align(N))`. /// /// Unlike `C`, zero sized structs are not rounded up to one byte in size. /// /// ## Size of Enums /// /// Enums that carry no data other than the discriminant have the same size as C enums /// on the platform they are compiled for. /// /// ## Size of Unions /// /// The size of a union is the size of its largest field. /// /// Unlike `C`, zero sized unions are not rounded up to one byte in size. /// /// # Examples /// /// ``` /// use std::mem; /// /// // Some primitives /// assert_eq!(4, mem::size_of::<i32>()); /// assert_eq!(8, mem::size_of::<f64>()); /// assert_eq!(0, mem::size_of::<()>()); /// /// // Some arrays /// assert_eq!(8, mem::size_of::<[i32; 2]>()); /// assert_eq!(12, mem::size_of::<[i32; 3]>()); /// assert_eq!(0, mem::size_of::<[i32; 0]>()); /// /// /// // Pointer size equality /// assert_eq!(mem::size_of::<&i32>(), mem::size_of::<*const i32>()); /// assert_eq!(mem::size_of::<&i32>(), mem::size_of::<Box<i32>>()); /// assert_eq!(mem::size_of::<&i32>(), mem::size_of::<Option<&i32>>()); /// assert_eq!(mem::size_of::<Box<i32>>(), mem::size_of::<Option<Box<i32>>>()); /// ``` /// /// Using `#[repr(C)]`. /// /// ``` /// use std::mem; /// /// #[repr(C)] /// struct FieldStruct { /// first: u8, /// second: u16, /// third: u8 /// } /// /// // The size of the first field is 1, so add 1 to the size. Size is 1. /// // The alignment of the second field is 2, so add 1 to the size for padding. Size is 2. /// // The size of the second field is 2, so add 2 to the size. Size is 4. /// // The alignment of the third field is 1, so add 0 to the size for padding. Size is 4. /// // The size of the third field is 1, so add 1 to the size. Size is 5. /// // Finally, the alignment of the struct is 2 (because the largest alignment amongst its /// // fields is 2), so add 1 to the size for padding. Size is 6. /// assert_eq!(6, mem::size_of::<FieldStruct>()); /// /// #[repr(C)] /// struct TupleStruct(u8, u16, u8); /// /// // Tuple structs follow the same rules. /// assert_eq!(6, mem::size_of::<TupleStruct>()); /// /// // Note that reordering the fields can lower the size. We can remove both padding bytes /// // by putting `third` before `second`. /// #[repr(C)] /// struct FieldStructOptimized { /// first: u8, /// third: u8, /// second: u16 /// } /// /// assert_eq!(4, mem::size_of::<FieldStructOptimized>()); /// /// // Union size is the size of the largest field. /// #[repr(C)] /// union ExampleUnion { /// smaller: u8, /// larger: u16 /// } /// /// assert_eq!(2, mem::size_of::<ExampleUnion>()); /// ``` /// /// [alignment]: ./fn.align_of.html #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_promotable] pub const fn size_of<T>() -> usize { intrinsics::size_of::<T>() } /// Returns the size of the pointed-to value in bytes. /// /// This is usually the same as `size_of::<T>()`. However, when `T` *has* no /// statically-known size, e.g., a slice [`[T]`][slice] or a [trait object], /// then `size_of_val` can be used to get the dynamically-known size. /// /// [slice]: ../../std/primitive.slice.html /// [trait object]: ../../book/ch17-02-trait-objects.html /// /// # Examples /// /// ``` /// use std::mem; /// /// assert_eq!(4, mem::size_of_val(&5i32)); /// /// let x: [u8; 13] = [0; 13]; /// let y: &[u8] = &x; /// assert_eq!(13, mem::size_of_val(y)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn size_of_val<T: ?Sized>(val: &T) -> usize { unsafe { intrinsics::size_of_val(val) } } /// Returns the [ABI]-required minimum alignment of a type. /// /// Every reference to a value of the type `T` must be a multiple of this number. /// /// This is the alignment used for struct fields. It may be smaller than the preferred alignment. /// /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface /// /// # Examples /// /// ``` /// # #![allow(deprecated)] /// use std::mem; /// /// assert_eq!(4, mem::min_align_of::<i32>()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_deprecated(reason = "use `align_of` instead", since = "1.2.0")] pub fn min_align_of<T>() -> usize { intrinsics::min_align_of::<T>() } /// Returns the [ABI]-required minimum alignment of the type of the value that `val` points to. /// /// Every reference to a value of the type `T` must be a multiple of this number. /// /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface /// /// # Examples /// /// ``` /// # #![allow(deprecated)] /// use std::mem; /// /// assert_eq!(4, mem::min_align_of_val(&5i32)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_deprecated(reason = "use `align_of_val` instead", since = "1.2.0")] pub fn min_align_of_val<T: ?Sized>(val: &T) -> usize { unsafe { intrinsics::min_align_of_val(val) } } /// Returns the [ABI]-required minimum alignment of a type. /// /// Every reference to a value of the type `T` must be a multiple of this number. /// /// This is the alignment used for struct fields. It may be smaller than the preferred alignment. /// /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface /// /// # Examples /// /// ``` /// use std::mem; /// /// assert_eq!(4, mem::align_of::<i32>()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_promotable] pub const fn align_of<T>() -> usize { intrinsics::min_align_of::<T>() } /// Returns the [ABI]-required minimum alignment of the type of the value that `val` points to. /// /// Every reference to a value of the type `T` must be a multiple of this number. /// /// [ABI]: https://en.wikipedia.org/wiki/Application_binary_interface /// /// # Examples /// /// ``` /// use std::mem; /// /// assert_eq!(4, mem::align_of_val(&5i32)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn align_of_val<T: ?Sized>(val: &T) -> usize { unsafe { intrinsics::min_align_of_val(val) } } /// Returns `true` if dropping values of type `T` matters. /// /// This is purely an optimization hint, and may be implemented conservatively: /// it may return `true` for types that don't actually need to be dropped. /// As such always returning `true` would be a valid implementation of /// this function. However if this function actually returns `false`, then you /// can be certain dropping `T` has no side effect. /// /// Low level implementations of things like collections, which need to manually /// drop their data, should use this function to avoid unnecessarily /// trying to drop all their contents when they are destroyed. This might not /// make a difference in release builds (where a loop that has no side-effects /// is easily detected and eliminated), but is often a big win for debug builds. /// /// Note that `ptr::drop_in_place` already performs this check, so if your workload /// can be reduced to some small number of drop_in_place calls, using this is /// unnecessary. In particular note that you can drop_in_place a slice, and that /// will do a single needs_drop check for all the values. /// /// Types like Vec therefore just `drop_in_place(&mut self[..])` without using /// needs_drop explicitly. Types like `HashMap`, on the other hand, have to drop /// values one at a time and should use this API. /// /// /// # Examples /// /// Here's an example of how a collection might make use of `needs_drop`: /// /// ``` /// use std::{mem, ptr}; /// /// pub struct MyCollection<T> { /// # data: [T; 1], /// /* ... */ /// } /// # impl<T> MyCollection<T> { /// # fn iter_mut(&mut self) -> &mut [T] { &mut self.data } /// # fn free_buffer(&mut self) {} /// # } /// /// impl<T> Drop for MyCollection<T> { /// fn drop(&mut self) { /// unsafe { /// // drop the data /// if mem::needs_drop::<T>() { /// for x in self.iter_mut() { /// ptr::drop_in_place(x); /// } /// } /// self.free_buffer(); /// } /// } /// } /// ``` #[inline] #[stable(feature = "needs_drop", since = "1.21.0")] pub const fn needs_drop<T>() -> bool { intrinsics::needs_drop::<T>() } /// Returns the value of type `T` represented by the all-zero byte-pattern. /// /// This means that, for example, the padding byte in `(u8, u16)` is not /// necessarily zeroed. /// /// There is no guarantee that an all-zero byte-pattern represents a valid value of /// some type `T`. For example, the all-zero byte-pattern is not a valid value /// for reference types (`&T` and `&mut T`). Using `zeroed` on such types /// causes immediate [undefined behavior][ub] because [the Rust compiler assumes][inv] /// that there always is a valid value in a variable it considers initialized. /// /// This has the same effect as [`MaybeUninit::zeroed().assume_init()`][zeroed]. /// It is useful for FFI sometimes, but should generally be avoided. /// /// [zeroed]: union.MaybeUninit.html#method.zeroed /// [ub]: ../../reference/behavior-considered-undefined.html /// [inv]: union.MaybeUninit.html#initialization-invariant /// /// # Examples /// /// Correct usage of this function: initializing an integer with zero. /// /// ``` /// use std::mem; /// /// let x: i32 = unsafe { mem::zeroed() }; /// assert_eq!(0, x); /// ``` /// /// *Incorrect* usage of this function: initializing a reference with zero. /// /// ```rust,no_run /// # #![allow(invalid_value)] /// use std::mem; /// /// let _x: &i32 = unsafe { mem::zeroed() }; // Undefined behavior! /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[allow(deprecated_in_future)] #[allow(deprecated)] pub unsafe fn zeroed<T>() -> T { intrinsics::panic_if_uninhabited::<T>(); intrinsics::init() } /// Bypasses Rust's normal memory-initialization checks by pretending to /// produce a value of type `T`, while doing nothing at all. /// /// **This function is deprecated.** Use [`MaybeUninit<T>`] instead. /// /// The reason for deprecation is that the function basically cannot be used /// correctly: [the Rust compiler assumes][inv] that values are properly initialized. /// As a consequence, calling e.g. `mem::uninitialized::<bool>()` causes immediate /// undefined behavior for returning a `bool` that is not definitely either `true` /// or `false`. Worse, truly uninitialized memory like what gets returned here /// is special in that the compiler knows that it does not have a fixed value. /// This makes it undefined behavior to have uninitialized data in a variable even /// if that variable has an integer type. /// (Notice that the rules around uninitialized integers are not finalized yet, but /// until they are, it is advisable to avoid them.) /// /// [`MaybeUninit<T>`]: union.MaybeUninit.html /// [inv]: union.MaybeUninit.html#initialization-invariant #[inline] #[rustc_deprecated(since = "1.39.0", reason = "use `mem::MaybeUninit` instead")] #[stable(feature = "rust1", since = "1.0.0")] #[allow(deprecated_in_future)] #[allow(deprecated)] pub unsafe fn uninitialized<T>() -> T { intrinsics::panic_if_uninhabited::<T>(); intrinsics::uninit() } /// Swaps the values at two mutable locations, without deinitializing either one. /// /// # Examples /// /// ``` /// use std::mem; /// /// let mut x = 5; /// let mut y = 42; /// /// mem::swap(&mut x, &mut y); /// /// assert_eq!(42, x); /// assert_eq!(5, y); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn swap<T>(x: &mut T, y: &mut T) { unsafe { ptr::swap_nonoverlapping_one(x, y); } } /// Replace `dest` with the default value of `T`, and return the previous `dest` value. /// /// # Examples /// /// A simple example: /// /// ``` /// #![feature(mem_take)] /// /// use std::mem; /// /// let mut v: Vec<i32> = vec![1, 2]; /// /// let old_v = mem::take(&mut v); /// assert_eq!(vec![1, 2], old_v); /// assert!(v.is_empty()); /// ``` /// /// `take` allows taking ownership of a struct field by replacing it with an "empty" value. /// Without `take` you can run into issues like these: /// /// ```compile_fail,E0507 /// struct Buffer<T> { buf: Vec<T> } /// /// impl<T> Buffer<T> { /// fn get_and_reset(&mut self) -> Vec<T> { /// // error: cannot move out of dereference of `&mut`-pointer /// let buf = self.buf; /// self.buf = Vec::new(); /// buf /// } /// } /// ``` /// /// Note that `T` does not necessarily implement [`Clone`], so it can't even clone and reset /// `self.buf`. But `take` can be used to disassociate the original value of `self.buf` from /// `self`, allowing it to be returned: /// /// ``` /// #![feature(mem_take)] /// /// use std::mem; /// /// # struct Buffer<T> { buf: Vec<T> } /// impl<T> Buffer<T> { /// fn get_and_reset(&mut self) -> Vec<T> { /// mem::take(&mut self.buf) /// } /// } /// /// let mut buffer = Buffer { buf: vec![0, 1] }; /// assert_eq!(buffer.buf.len(), 2); /// /// assert_eq!(buffer.get_and_reset(), vec![0, 1]); /// assert_eq!(buffer.buf.len(), 0); /// ``` /// /// [`Clone`]: ../../std/clone/trait.Clone.html #[inline] #[unstable(feature = "mem_take", issue = "61129")] pub fn take<T: Default>(dest: &mut T) -> T { replace(dest, T::default()) } /// Moves `src` into the referenced `dest`, returning the previous `dest` value. /// /// Neither value is dropped. /// /// # Examples /// /// A simple example: /// /// ``` /// use std::mem; /// /// let mut v: Vec<i32> = vec![1, 2]; /// /// let old_v = mem::replace(&mut v, vec![3, 4, 5]); /// assert_eq!(vec![1, 2], old_v); /// assert_eq!(vec![3, 4, 5], v); /// ``` /// /// `replace` allows consumption of a struct field by replacing it with another value. /// Without `replace` you can run into issues like these: /// /// ```compile_fail,E0507 /// struct Buffer<T> { buf: Vec<T> } /// /// impl<T> Buffer<T> { /// fn replace_index(&mut self, i: usize, v: T) -> T { /// // error: cannot move out of dereference of `&mut`-pointer /// let t = self.buf[i]; /// self.buf[i] = v; /// t /// } /// } /// ``` /// /// Note that `T` does not necessarily implement [`Clone`], so we can't even clone `self.buf[i]` to /// avoid the move. But `replace` can be used to disassociate the original value at that index from /// `self`, allowing it to be returned: /// /// ``` /// # #![allow(dead_code)] /// use std::mem; /// /// # struct Buffer<T> { buf: Vec<T> } /// impl<T> Buffer<T> { /// fn replace_index(&mut self, i: usize, v: T) -> T { /// mem::replace(&mut self.buf[i], v) /// } /// } /// /// let mut buffer = Buffer { buf: vec![0, 1] }; /// assert_eq!(buffer.buf[0], 0); /// /// assert_eq!(buffer.replace_index(0, 2), 0); /// assert_eq!(buffer.buf[0], 2); /// ``` /// /// [`Clone`]: ../../std/clone/trait.Clone.html #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn replace<T>(dest: &mut T, mut src: T) -> T { swap(dest, &mut src); src } /// Disposes of a value. /// /// This does call the argument's implementation of [`Drop`][drop]. /// /// This effectively does nothing for types which implement `Copy`, e.g. /// integers. Such values are copied and _then_ moved into the function, so the /// value persists after this function call. /// /// This function is not magic; it is literally defined as /// /// ``` /// pub fn drop<T>(_x: T) { } /// ``` /// /// Because `_x` is moved into the function, it is automatically dropped before /// the function returns. /// /// [drop]: ../ops/trait.Drop.html /// /// # Examples /// /// Basic usage: /// /// ``` /// let v = vec![1, 2, 3]; /// /// drop(v); // explicitly drop the vector /// ``` /// /// Since [`RefCell`] enforces the borrow rules at runtime, `drop` can /// release a [`RefCell`] borrow: /// /// ``` /// use std::cell::RefCell; /// /// let x = RefCell::new(1); /// /// let mut mutable_borrow = x.borrow_mut(); /// *mutable_borrow = 1; /// /// drop(mutable_borrow); // relinquish the mutable borrow on this slot /// /// let borrow = x.borrow(); /// println!("{}", *borrow); /// ``` /// /// Integers and other types implementing [`Copy`] are unaffected by `drop`. /// /// ``` /// #[derive(Copy, Clone)] /// struct Foo(u8); /// /// let x = 1; /// let y = Foo(2); /// drop(x); // a copy of `x` is moved and dropped /// drop(y); // a copy of `y` is moved and dropped /// /// println!("x: {}, y: {}", x, y.0); // still available /// ``` /// /// [`RefCell`]: ../../std/cell/struct.RefCell.html /// [`Copy`]: ../../std/marker/trait.Copy.html #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn drop<T>(_x: T) { } /// Interprets `src` as having type `&U`, and then reads `src` without moving /// the contained value. /// /// This function will unsafely assume the pointer `src` is valid for /// [`size_of::<U>`][size_of] bytes by transmuting `&T` to `&U` and then reading /// the `&U`. It will also unsafely create a copy of the contained value instead of /// moving out of `src`. /// /// It is not a compile-time error if `T` and `U` have different sizes, but it /// is highly encouraged to only invoke this function where `T` and `U` have the /// same size. This function triggers [undefined behavior][ub] if `U` is larger than /// `T`. /// /// [ub]: ../../reference/behavior-considered-undefined.html /// [size_of]: fn.size_of.html /// /// # Examples /// /// ``` /// use std::mem; /// /// #[repr(packed)] /// struct Foo { /// bar: u8, /// } /// /// let foo_slice = [10u8]; /// /// unsafe { /// // Copy the data from 'foo_slice' and treat it as a 'Foo' /// let mut foo_struct: Foo = mem::transmute_copy(&foo_slice); /// assert_eq!(foo_struct.bar, 10); /// /// // Modify the copied data /// foo_struct.bar = 20; /// assert_eq!(foo_struct.bar, 20); /// } /// /// // The contents of 'foo_slice' should not have changed /// assert_eq!(foo_slice, [10]); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub unsafe fn transmute_copy<T, U>(src: &T) -> U { ptr::read_unaligned(src as *const T as *const U) } /// Opaque type representing the discriminant of an enum. /// /// See the [`discriminant`] function in this module for more information. /// /// [`discriminant`]: fn.discriminant.html #[stable(feature = "discriminant_value", since = "1.21.0")] pub struct Discriminant<T>(u64, PhantomData<fn() -> T>); // N.B. These trait implementations cannot be derived because we don't want any bounds on T. #[stable(feature = "discriminant_value", since = "1.21.0")] impl<T> Copy for Discriminant<T> {} #[stable(feature = "discriminant_value", since = "1.21.0")] impl<T> clone::Clone for Discriminant<T> { fn clone(&self) -> Self { *self } } #[stable(feature = "discriminant_value", since = "1.21.0")] impl<T> cmp::PartialEq for Discriminant<T> { fn eq(&self, rhs: &Self) -> bool { self.0 == rhs.0 } } #[stable(feature = "discriminant_value", since = "1.21.0")] impl<T> cmp::Eq for Discriminant<T> {} #[stable(feature = "discriminant_value", since = "1.21.0")] impl<T> hash::Hash for Discriminant<T> { fn hash<H: hash::Hasher>(&self, state: &mut H) { self.0.hash(state); } } #[stable(feature = "discriminant_value", since = "1.21.0")] impl<T> fmt::Debug for Discriminant<T> { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_tuple("Discriminant") .field(&self.0) .finish() } } /// Returns a value uniquely identifying the enum variant in `v`. /// /// If `T` is not an enum, calling this function will not result in undefined behavior, but the /// return value is unspecified. /// /// # Stability /// /// The discriminant of an enum variant may change if the enum definition changes. A discriminant /// of some variant will not change between compilations with the same compiler. /// /// # Examples /// /// This can be used to compare enums that carry data, while disregarding /// the actual data: /// /// ``` /// use std::mem; /// /// enum Foo { A(&'static str), B(i32), C(i32) } /// /// assert!(mem::discriminant(&Foo::A("bar")) == mem::discriminant(&Foo::A("baz"))); /// assert!(mem::discriminant(&Foo::B(1)) == mem::discriminant(&Foo::B(2))); /// assert!(mem::discriminant(&Foo::B(3)) != mem::discriminant(&Foo::C(3))); /// ``` #[stable(feature = "discriminant_value", since = "1.21.0")] pub fn discriminant<T>(v: &T) -> Discriminant<T> { unsafe { Discriminant(intrinsics::discriminant_value(v), PhantomData) } }